
Linux Plumbers Conference 2016

Man-pages: discovery, feedback
loops, and the perfect kernel

commit message

Michael Kerrisk
man7.org Training and Consulting

http://man7.org/training/

4 November 2016, Santa Fe (NM), USA

Outline

1 Introduction
2 man-pages: history and current state
3 man-pages: challenges
4 The challenges of API design
5 Mitigations
6 Mitigations: unit tests
7 Mitigations: specifications
8 Mitigations: write a real application
9 Mitigations: documentation
10 The problem of discovery
11 The feedback loop
12 The perfect kernel commit message
13 Concluding thoughts
14 Addendum: cgroup mountinfo mails

Outline

1 Introduction
2 man-pages: history and current state
3 man-pages: challenges
4 The challenges of API design
5 Mitigations
6 Mitigations: unit tests
7 Mitigations: specifications
8 Mitigations: write a real application
9 Mitigations: documentation
10 The problem of discovery
11 The feedback loop
12 The perfect kernel commit message
13 Concluding thoughts
14 Addendum: cgroup mountinfo mails

Who am I?

Contributor to Linux man-pages project since 2000

Maintainer since 2004
Lots of testing, lots of bug reports

Much kernel reading; a very small number of kernel patches

Author of a book on the Linux programming interface
IOW: looking at Linux APIs a lot and for a long time

I.e., kernel-user-space APIs and libc APIs

http://man7.org/

Man-pages: discovery, feedback, and commit messages c©2016 Kerrisk | Introduction 4 / 91

The Linux man-pages project

Documents kernel-user-space and C library APIs
Mostly pages in Sections 2 (syscalls) and 3 (library
functions)

Some pages in Sections 4 (devices) and 5 (file formats)

Also: many overview pages in Section 7

https://www.kernel.org/doc/man-pages/

Passed 1000-page mark in July 2016
≈2200 interfaces documented

≈146k lines (≈2500 pages) of rendered text

Man-pages: discovery, feedback, and commit messages c©2016 Kerrisk | Introduction 5 / 91

Outline

Two interlinked topics:
man-pages project

History, current state, challenges

How can we get API design right (or at least better)?
Why API design is challenging

Mitigations

The problem of discovery

The feedback loop

The perfect kernel commit message

Man-pages: discovery, feedback, and commit messages c©2016 Kerrisk | Introduction 6 / 91

Outline

1 Introduction
2 man-pages: history and current state
3 man-pages: challenges
4 The challenges of API design
5 Mitigations
6 Mitigations: unit tests
7 Mitigations: specifications
8 Mitigations: write a real application
9 Mitigations: documentation
10 The problem of discovery
11 The feedback loop
12 The perfect kernel commit message
13 Concluding thoughts
14 Addendum: cgroup mountinfo mails

Brief history of man-pages

Founded in 1993
Release 1.0: 305 pages

Pages put together mostly by ≈6 authors

Often rather short pages (average rendered length: 50 lines)

Initial maintainer: Rik Faith
1.0 to 1.5 (1993 - Feb 1995)

Subsequently: Andries Brouwer
1.6 to 1.70 (1995 - Oct 2004)

Since Nov 2004: Michael Kerrisk
2.00 onward

As at 4.07 (July 2016): 1002 pages

(Two lengthy spells of maintainership ⇒ good continuity!)

Man-pages: discovery, feedback, and commit messages c©2016 Kerrisk | man-pages: history and current state 8 / 91

Some statistics pre/post 2004

Attribute Pre 2.00 2.00 and later
Timespan 1993-2004 (11 yrs) 2004-2016 (12 yrs)
of releases 71 174 [4, 5] *
Avg diff/yr [1] 24k [2] 75k [3] *
Pages added 765 ≈262 [4]
Pages removed - ≈25 [4]
Avg rendered page length 95 lines (1.70) 145 lines [4] *

* I like to believe that I’ve improved the state of the project

Much higher level of activity

More, longer, better pages

[1] Diff stats exclude POSIX man pages and COLOPHON sections
[2] Includes initial release (1.0)
[3] Especially in man-pages-2.xx: vast numbers of typo, spelling (US), notational, and
consistency fixes
[4] As at man-pages-4.07, July 2016
[5] ≈16k commits

Man-pages: discovery, feedback, and commit messages c©2016 Kerrisk | man-pages: history and current state 9 / 91

Why things are better

I’ve put a lot of energy into the project
Some of that was to turn man-pages into a visible project
Before 2004, man-pages was nearly invisible:

No regular release announcements to any mailing list

No version control(!) or change logs (no history :-()

No public infrastructure

No in-page info on how to report bugs

Fixes
Regular release notes on LKML since start of 2006

Nov 2004: private SVN; from 2008: public Git

Late 2007: added project mailing list, website, bug tracker,
blog, online rendered pages

Dec 2007: ⇒ COLOPHON on each page describes how to
report bugs (a feedback loop!)

Man-pages: discovery, feedback, and commit messages c©2016 Kerrisk | man-pages: history and current state 10 / 91

Outline

1 Introduction
2 man-pages: history and current state
3 man-pages: challenges
4 The challenges of API design
5 Mitigations
6 Mitigations: unit tests
7 Mitigations: specifications
8 Mitigations: write a real application
9 Mitigations: documentation
10 The problem of discovery
11 The feedback loop
12 The perfect kernel commit message
13 Concluding thoughts
14 Addendum: cgroup mountinfo mails

Challenges: participation (or: the lies I tell)

man-pages-4.05
467 commits, 440 pages changed

74 “contributors” (a record)
The hidden truth:

Most contributions are comments or emailed bug reports
Few actual patches or reviews of patches
From 467 commits: I was author of 401 (≈70%)

But, outside contribution is still much better than in 2004
A “good” release in 2005 might have seen input from 10
people

Since 2004: ≈262 new man pages added
The hidden truth: I wrote 164 of those (> 60%)

And cowrote many of the others
But, culture has slowly improved...

E.g., for all 4 syscalls added in Linux 3.17, devs drafted a
man page

Man-pages: discovery, feedback, and commit messages c©2016 Kerrisk | man-pages: challenges 12 / 91

Challenges: do I trust a patch?

Many corners of interface where I’m not deeply
knowledgeable...
To detect bogus patches and bug reports in those corners, I
need one of:

Confidence in submitter/reporter (usually based on past
work; uncommon)

A competent reviewer (often difficult to find)

To improve my own knowledge sufficiently so that I can
review (can be very time-consuming)

Lacking any of above, reports+patches languish/get lost :-(
Sometimes revisit much later, and find I do now have
requisite knowledge

Occasionally, reports get dealt with 5+ years later :-(

Man-pages: discovery, feedback, and commit messages c©2016 Kerrisk | man-pages: challenges 13 / 91

Challenges: lack of contributors

Lack of patches from others
Patches from kernel / libc devs are still the exception
2009-present: I am author of > 75% of all patches

Yes, perhaps half of my patches are typo/wording/minor
fixes, but still...

Lack of reviewers (≈100 Reviewed-by: tags in git log)
I am reviewer of last resort for vast majority of patches

Man-pages: discovery, feedback, and commit messages c©2016 Kerrisk | man-pages: challenges 14 / 91

Challenges: me as the bottleneck

Most of my work on man-pages has been voluntary
Except ≈8 months in 2008 in paid LF fellowship

In addition to being maintainer, I am majority contributor
Pace of project depends strongly on my energy/availability

Pace has varied wildly; for example (commits/year):
2007: 1712

2011: 296 (pretty burned out; nearly stepped away)

2015: 3076

2016: ≈2000 (expected)

Man-pages: discovery, feedback, and commit messages c©2016 Kerrisk | man-pages: challenges 15 / 91

Ways to help: contribution

Whenever you see someone changing the user-space API:
Remind them to CC linux-api@vger.kernel.org

https://www.kernel.org/doc/man-pages/linux-api-ml.html

Ask them to (in decreasing order of preference):
Write a patch for the man page

Send in some plain text describing API change

CC me + linux-man@vger.kernel.org on mail thread
containing source code patch
B But this is not a scalable solution...

Write patches for man pages
http://www.kernel.org/doc/man-pages/contributing.html

Review patches on linux-man@vger.kernel.org

Man-pages: discovery, feedback, and commit messages c©2016 Kerrisk | man-pages: challenges 16 / 91

Ways to help: funding/finding a maintainer

The situation where there is no paid maintainer for core
documentation is ridiculous, right?

I like to believe that current man-pages is a lot better than
what I inherited
But it could be so much better...

E.g., 250+ commits in man-pages-4.04 to expand feeble
futex(2) page from 169 to 1001 lines

But that work was > 5 years overdue

Long backlog of work:
≈200 FIXMEs in man pages source files

www.kernel.org/doc/man-pages/missing_pages.html
(a long list)

Man-pages: discovery, feedback, and commit messages c©2016 Kerrisk | man-pages: challenges 17 / 91

Ways to help: funding/finding a maintainer

There is (easily) enough work for a full-time maintainer
And I’m not necessarily saying it should/I want it to be me

But, failing that, point people at http://man7.org/training
Help keep the current man-pages maintainer and family
fed...

Man-pages: discovery, feedback, and commit messages c©2016 Kerrisk | man-pages: challenges 18 / 91

Outline

1 Introduction
2 man-pages: history and current state
3 man-pages: challenges
4 The challenges of API design
5 Mitigations
6 Mitigations: unit tests
7 Mitigations: specifications
8 Mitigations: write a real application
9 Mitigations: documentation
10 The problem of discovery
11 The feedback loop
12 The perfect kernel commit message
13 Concluding thoughts
14 Addendum: cgroup mountinfo mails

Many kinds of APIs

Pseudo-filesystems (/proc, /sys, /dev/mqueue, debugfs,
configfs, etc.)

Netlink

Auxiliary vector

Virtual devices

Signals

System calls ⇐ focus, for purposes of example

Multiplexor syscalls (ioctl(), prctl(), fcntl(), bpf(),
perf_event_open(), ...)

Man-pages: discovery, feedback, and commit messages c©2016 Kerrisk | The challenges of API design 20 / 91

Design goals for APIs

Properly designed and implemented API should:
be bug free!
be as simple as possible (but no simpler)
be easy to use / difficult to misuse
be consistent with related/similar APIs
avoid need for compat layer, or gratuitous arch. differences
integrate well with existing APIs

e.g., interactions with fork(), exec(), threads, signals, FDs

be as general as possible
allow for future extension
adhere to relevant standards, where possible (e.g., POSIX)
be at least as good as earlier APIs with similar functionality
be maintainable over time (a multilayered question)

Man-pages: discovery, feedback, and commit messages c©2016 Kerrisk | The challenges of API design 21 / 91

We’ve failed repeatedly
on every one of those points

A few personal/recent favorites follow; for much more, see:

http://man7.org/conf/fosdem2016/designing_linux_kernel_APIs-
fosdem-2016-Kerrisk.pdf

http://man7.org/conf/lca2013/Why_kernel_space_sucks-2013-02-
01-printable.pdf

Man-pages: discovery, feedback, and commit messages c©2016 Kerrisk | The challenges of API design 22 / 91

Bugs

Won’t go into numerous examples...
Suffice to say, kernel (and libc) APIs have repeatedly been
released with bugs

“Show me a new Linux API, and I’ll show you a bug”

(More recently, fuzzers such as trinity have helped get rid of
many of more egregious cases)

Frequently: insufficient prerelease testing
Painful for userspace

User-space code may need to special case for kernel version

Man-pages: discovery, feedback, and commit messages c©2016 Kerrisk | The challenges of API design 23 / 91

Design inconsistencies

From arch/Kconfig
#
ABI hall of shame
#
config CLONE_BACKWARDS

bool
help

Architecture has tls passed as the 4th argument of clone (2),
not the 5th one.

config CLONE_BACKWARDS2
bool
help

Architecture has the first two arguments of clone (2) swapped.

config CLONE_BACKWARDS3
bool
help

Architecture has tls passed as the 3rd argument of clone (2),
not the 5th one.

...

And still more variations on ia64, SPARC, blackfin, m68k

At least a half dozen clone() APIs...

Man-pages: discovery, feedback, and commit messages c©2016 Kerrisk | The challenges of API design 24 / 91

Behavioral inconsistencies

mlock(start, length)
Round start down to page boundary

Round length up to next page boundary
mlock(4000, 6000) affects bytes 0..12287

(Assuming page size of 4096B)

remap_file_pages(start, length, ...)
Round start down to page boundary

Round length down to next page boundary
remap_file_pages(4000, 6000) affects?

Bytes 0 to 4096

Users expect similar looking APIs to behave similarly
Violate that assumption, and users write buggy code

Man-pages: discovery, feedback, and commit messages c©2016 Kerrisk | The challenges of API design 25 / 91

Behavioral inconsistencies

Various system calls allow one process to change attributes
of another process

e.g., setpriority(), ioprio_set(), migrate_pages(), prlimit()

Calls from unprivileged process require UID/GID match
between caller and target

I.e., some combination UIDs or GIDs must match between
caller and target (“t-”)

Let’s make life interesting for user space:
setpriority(): euid == t-ruid || euid == t-euid

ioprio_set(): ruid == t-ruid || euid == t-ruid

migrate_pages(): uid == t-ruid || uid == t-suid ||
euid == t-ruid || euid == t-suid

prlimit():
(ruid == t-ruid && ruid == t-euid && ruid == t-suid) &&
(rgid == t-rgid && rgid == t-guid && rgid == t-sgid)

Man-pages: discovery, feedback, and commit messages c©2016 Kerrisk | The challenges of API design 26 / 91

Maintainability: a many faceted problem

API maintainability has many aspects...

Man-pages: discovery, feedback, and commit messages c©2016 Kerrisk | The challenges of API design 27 / 91

Maintainability: extensible APIs

Many historical Linux APIs lacked a flags argument or other
mechanism to allow extension of an API

Thus: umount() ⇒ umount2(); preadv() ⇒ preadv2();
epoll_create() ⇒ epoll_create1();
renameat() ⇒ renameat2(); and so on

https://lwn.net/Articles/585415/

And many historical APIs that had flags argument failed to
check for invalid flag bits

sigaction(sa.sa_flags), recv(), clock_nanosleep(), msgrcv(),
semget(), semop(sops.sem_flg), open(), and many others

Problem 1: assigning meaning to previously unused bit may
break user-space code that carelessly passed that bit

Problem 2: user-space has no way to check kernel support
for a flag

https://lwn.net/Articles/588444/

Man-pages: discovery, feedback, and commit messages c©2016 Kerrisk | The challenges of API design 28 / 91

Maintainability: we don’t do decentralized design well

Decentralized development can fail badly when it comes to
(coherent) design

Man-pages: discovery, feedback, and commit messages c©2016 Kerrisk | The challenges of API design 29 / 91

Maintainability: we don’t do decentralized design well

Linux capabilities: divide power of root into small pieces
A compromised program that has capabilities is harder to
exploit than a compromised set-UID program

Linux 4.8: 38 capabilities

Kernel developer’s dilemma for new “dangerous” feature:
Add a new capability? (But: avoid explosion of capabilities)

Or assign feature to existing capability silo?

Adding to an existing silo is preferable...
“But which one?”

(Looks at capabilities(7)) “Hey! Sysadmins will do this!”

Welcome CAP_SYS_ADMIN, the new root
≈40% of all capability checks in kernel (game over...)

https://lwn.net/Articles/486306/

Man-pages: discovery, feedback, and commit messages c©2016 Kerrisk | The challenges of API design 30 / 91

Maintainability: we don’t do decentralized design well

Cgroups v1...

A mess of inconsistent interfaces, interpretation of
“hierarchy”, and more

Man-pages: discovery, feedback, and commit messages c©2016 Kerrisk | The challenges of API design 31 / 91

We’re just traditionalists

It’s not just us...
A long history of getting things wrong in UNIX APIs

Using syscall function result to both return info and indicate
success/failure is a fundamental design error

Purposes can conflict: getpriority(), fcntl(F_GETOWN)

Design of System V IPC truly was awful
Semantics of POSIX record locks are broken by design

Linux now has a better replacement!

select() modifies FD sets in place, forcing reinitialization
inside loops
UNIX domain socket sun_path null termination

Present since 1984
http://man7.org/conf/fosdem2016/puzzle-slides--UNIX-domain-
sockets-API-bug.pdf

Man-pages: discovery, feedback, and commit messages c©2016 Kerrisk | The challenges of API design 32 / 91

API design is hard

And when we fail...

(Usually) can’t fix a broken API
Fix == ABI change

User-space will break

(By contrast, fixing non-user-facing bugs and performance
issues is often much easier)

Thousands of user-space programmers will live with
a (bad) design for decades
⇒ We need to get API design right first time

Man-pages: discovery, feedback, and commit messages c©2016 Kerrisk | The challenges of API design 34 / 91

Outline

1 Introduction
2 man-pages: history and current state
3 man-pages: challenges
4 The challenges of API design
5 Mitigations
6 Mitigations: unit tests
7 Mitigations: specifications
8 Mitigations: write a real application
9 Mitigations: documentation
10 The problem of discovery
11 The feedback loop
12 The perfect kernel commit message
13 Concluding thoughts
14 Addendum: cgroup mountinfo mails

What can we do to ensure API
design is better first time round?

Goals

Make sure API is well designed, fit for purpose, and
extensible

Prevent ABI regressions

Minimize bugs

Man-pages: discovery, feedback, and commit messages c©2016 Kerrisk | Mitigations 37 / 91

Resources

Review
Testing

Mechanical testing has limited application

Need to involve humans...
As early as possible

(Usually can’t fix an API after release)

Man-pages: discovery, feedback, and commit messages c©2016 Kerrisk | Mitigations 38 / 91

Outline

1 Introduction
2 man-pages: history and current state
3 man-pages: challenges
4 The challenges of API design
5 Mitigations
6 Mitigations: unit tests
7 Mitigations: specifications
8 Mitigations: write a real application
9 Mitigations: documentation
10 The problem of discovery
11 The feedback loop
12 The perfect kernel commit message
13 Concluding thoughts
14 Addendum: cgroup mountinfo mails

Unit tests

To state the obvious, unit tests:
Prevent behavior regressions in face of future refactoring
of implementation
Provide checks that API works as expected/advertised

I.e., does it do what it says on the tin?

Failures on both points have been surprisingly frequent
See my previous presentations

Man-pages: discovery, feedback, and commit messages c©2016 Kerrisk | Mitigations: unit tests 40 / 91

Example (does it do what it says on the tin?)

recvmmsg() system call (linux 2.6.33)
Performance: receive multiple datagrams via single syscall

timeout argument added late in implementation, after
reviewer suggestion

Intention versus implementation:
Apparent concept: place timeout on receipt of complete set
of datagrams
Actual implementation: timeout tested only after receipt of
each datagram

Renders timeout useless...

Clearly, no serious testing of implementation

Man-pages: discovery, feedback, and commit messages c©2016 Kerrisk | Mitigations: unit tests 41 / 91

Where to put your tests?

Historically, only real home was LTP (Linux Test Project),
but:

Tests were out of kernel tree

Often added only after APIs were released

Coverage was only partial

https://linux-test-project.github.io/

kselftest project (started in 2014) was created to improve
matters:

Tests reside in kernel source tree
make kselftest

Paid maintainer: Shuah Khan

Wiki: https://kselftest.wiki.kernel.org/

Mailing list: linux-kselftest@vger.kernel.org

Man-pages: discovery, feedback, and commit messages c©2016 Kerrisk | Mitigations: unit tests 42 / 91

But, how do you know what to
test if there is no specification?

Man-pages: discovery, feedback, and commit messages c©2016 Kerrisk | Mitigations: unit tests 43 / 91

Outline

1 Introduction
2 man-pages: history and current state
3 man-pages: challenges
4 The challenges of API design
5 Mitigations
6 Mitigations: unit tests
7 Mitigations: specifications
8 Mitigations: write a real application
9 Mitigations: documentation
10 The problem of discovery
11 The feedback loop
12 The perfect kernel commit message
13 Concluding thoughts
14 Addendum: cgroup mountinfo mails

“Programming is not just an act of telling a computer
what to do: it is also an act of telling other

programmers what you wished the computer to do.
Both are important, and the latter deserves care.”

Andrew Morton, March 2012

Man-pages: discovery, feedback, and commit messages c©2016 Kerrisk | Mitigations: specifications 45 / 91

Fundamental problem behind
(e.g.) recvmmsg() timeout bugs:

no one wrote a specification
during development or review

Man-pages: discovery, feedback, and commit messages c©2016 Kerrisk | Mitigations: specifications 46 / 91

A test needs a specification

recvmmsg() timeout argument needed a specification; something like:

The timeout argument implements three cases:
1 timeout is NULL: the call blocks until vlen datagrams are received.
2 timeout points to {0, 0}: the call (immediately) returns up to vlen

datagrams if they are available. If no datagrams are available, the call
returns immediately, with the error EAGAIN.

3 timeout points to a structure in which at least one of the fields is nonzero.
The call blocks until either:

(a) the specified timeout expires

(b) vlen messages are received
In case (a), if one or more messages has been received, the call returns the
number of messages received; otherwise, if no messages were received, the
call fails with the error EAGAIN.

If, while blocking, the call is interrupted by a signal handler, then:
if 1 or more datagrams have been received, then those datagrams are
returned (and interruption by a signal handler is not (directly) reported by
this or any subsequent call to recvmmsg().

if no datagrams have so far been received, then the call fails with the error
EINTR.

Man-pages: discovery, feedback, and commit messages c©2016 Kerrisk | Mitigations: specifications 47 / 91

Specifications help

Specifications have numerous benefits:

Provides target for implementer
Without specification, how can we differentiate
implementer’s intention from actual implementation

IOW: how do we know what is a bug?

Allow us to write unit tests
Allow reviewers to more easily understand and critique API

⇒ will likely increase number of reviewers

Man-pages: discovery, feedback, and commit messages c©2016 Kerrisk | Mitigations: specifications 48 / 91

Where to put your specification?

At a minimum: in the commit message
To gain good karma: a man-pages patch

https://www.kernel.org/doc/man-pages/patches.html

Man-pages: discovery, feedback, and commit messages c©2016 Kerrisk | Mitigations: specifications 49 / 91

Outline

1 Introduction
2 man-pages: history and current state
3 man-pages: challenges
4 The challenges of API design
5 Mitigations
6 Mitigations: unit tests
7 Mitigations: specifications
8 Mitigations: write a real application
9 Mitigations: documentation
10 The problem of discovery
11 The feedback loop
12 The perfect kernel commit message
13 Concluding thoughts
14 Addendum: cgroup mountinfo mails

Example: inotify

Filesystem event notification API
Detect file opens, closes, writes, renames, deletions, etc.

A Good ThingTM...
Improves on predecessor (dnotify)

Better than polling filesystems using readdir() and stat()

But it should have been A Better ThingTM

Man-pages: discovery, feedback, and commit messages c©2016 Kerrisk | Mitigations: write a real application 51 / 91

Writing a “real” inotify application

Back story: I thought I understood inotify
Then I tried to write a “real” application...

Mirror state of a directory tree in application data
structure
1500 lines of C with (lots of) comments

http://man7.org/tlpi/code/online/dist/inotify/inotify
_dtree.c.html

Written up on LWN (https://lwn.net/Articles/605128/)

And understood all the work that inotify still leaves you to do

And what inotify could perhaps have done better

Man-pages: discovery, feedback, and commit messages c©2016 Kerrisk | Mitigations: write a real application 52 / 91

The limitations of inotify

A few among several tricky problems when using inotify:

Event notifications don’t include PID or UID
Can’t determine who/what triggered event

It might even be you

Why not supply PID / UID, at least to privileged
programs?

Monitoring of directories is not recursive
Must add new watches for each subdirectory

(Probably unavoidable limitation of API)

Can be expensive for large directory tree ⇒ see next point

Man-pages: discovery, feedback, and commit messages c©2016 Kerrisk | Mitigations: write a real application 53 / 91

The limitations of inotify

File renames generate MOVED_FROM+MOVED_TO event pair
Useful: provides old and new name of file
But two details combine to create a problem:

MOVED_FROM+MOVED_TO not guaranteed to be consecutive
No MOVED_TO if target directory is not monitored

Can’t be sure if MOVED_FROM will be followed by MOVED_TO

⇒ matching MOVED_FROM+MOVED_TO must be done
heuristically

Unavoidably racey, leading to possible matching failures

Matching failures ⇒ treated as tree delete + tree re-create
(expensive!)

User-space handling would have been much simpler,
and deterministic, if MOVED_FROM+MOVED_TO had been
guaranteed consecutive by kernel

Man-pages: discovery, feedback, and commit messages c©2016 Kerrisk | Mitigations: write a real application 54 / 91

Only way to discover design
problems in a new nontrivial API
is by writing complete, real-world

application(s)

(preferably more than one...)
(before the API is released in mainline kernel...)

API limitations should be rectified, or at least clearly
documented, before API release...

Man-pages: discovery, feedback, and commit messages c©2016 Kerrisk | Mitigations: write a real application 55 / 91

Outline

1 Introduction
2 man-pages: history and current state
3 man-pages: challenges
4 The challenges of API design
5 Mitigations
6 Mitigations: unit tests
7 Mitigations: specifications
8 Mitigations: write a real application
9 Mitigations: documentation
10 The problem of discovery
11 The feedback loop
12 The perfect kernel commit message
13 Concluding thoughts
14 Addendum: cgroup mountinfo mails

Documentation is good for the health of APIs

Inevitably, the process of writing documentation makes
you reflect about your design more deeply
Documentation:

Makes it easier for others to understand your API, think
about it, and critique it

Lowers hurdle for involvement

Broadens the audience that will understand and critique
your API

Do it well enough, and you might even get user-space
programmers involved

A well written man page is a pretty good vehicle, I’d say

Man-pages: discovery, feedback, and commit messages c©2016 Kerrisk | Mitigations: documentation 57 / 91

Man pages as a test specification

A well written man page often suffices as a test specification for
finding real bugs:

utimensat(): http://linux-man-pages.blogspot.com/2008/06/whats-
wrong-with-kernel-userland_30.html

timerfd: http://thread.gmane.org/gmane.linux.kernel/613442

(Gmane come back soon, we miss you)

Man-pages: discovery, feedback, and commit messages c©2016 Kerrisk | Mitigations: documentation 58 / 91

Outline

1 Introduction
2 man-pages: history and current state
3 man-pages: challenges
4 The challenges of API design
5 Mitigations
6 Mitigations: unit tests
7 Mitigations: specifications
8 Mitigations: write a real application
9 Mitigations: documentation
10 The problem of discovery
11 The feedback loop
12 The perfect kernel commit message
13 Concluding thoughts
14 Addendum: cgroup mountinfo mails

How do we discover when an API change has occurred?

How do we discover when a kernel-user-space API change
has occurred?

No simple way...
Personally (for man-pages):

I mostly don’t have time to track LKML

Watching linux-api@vger.kernel.org
Scripting to find candidate API differences between
successive kernel versions trees

Very imperfect...

LWN, KernelNewbies LinuxChanges
Sheer luck

Randomly notice something from reading kernel source, an
online article/mail thread, f2f conversation, etc.

Occasionally, a man-pages patch out of the blue

Man-pages: discovery, feedback, and commit messages c©2016 Kerrisk | The problem of discovery 60 / 91

How do we discover when an API change has occurred?

Many people are interested in this question, including:
User-space programmers

C library developers

man-pages project

strace project

Testing projects (LTP, trinity, ...)

LSB, KernelNewbies LinuxChanges, ...

Please CC linux-api@vger.kernel.org on API/ABI changes...
Discovery occurs at different times/rates for different groups

User-space programmers, as a group, are most affected
And often the last to know!

Man-pages: discovery, feedback, and commit messages c©2016 Kerrisk | The problem of discovery 61 / 91

Discoverability is even a problem for kernel developers

“Quite frankly, our most common ABI change is that
we don’t even realize that something changed.
And then people may or may not notice it.”

–Linus Torvalds, LKML, March 2012

I.e., kernel developers are sometimes not even aware they are
changing kernel-user-space API

Man-pages: discovery, feedback, and commit messages c©2016 Kerrisk | The problem of discovery 62 / 91

Silent API changes

So we get silent API changes
Two (from many) examples:

Adjustments of POSIX MQ implementation in Linux 3.5
caused two user-space breakages

mq_overview(7)

Linux 2.6.12 silently changed semantics of
fcntl(F_SETOWN) for MT programs

But only worked this out a few years later...

Too late to revert (maybe some apps depend on new
behavior!)

Linux 2.6.32 added F_SETOWN_EX to provide old behavior

(Unit tests, anyone?)

Man-pages: discovery, feedback, and commit messages c©2016 Kerrisk | The problem of discovery 63 / 91

Outline

1 Introduction
2 man-pages: history and current state
3 man-pages: challenges
4 The challenges of API design
5 Mitigations
6 Mitigations: unit tests
7 Mitigations: specifications
8 Mitigations: write a real application
9 Mitigations: documentation
10 The problem of discovery
11 The feedback loop
12 The perfect kernel commit message
13 Concluding thoughts
14 Addendum: cgroup mountinfo mails

The problem

Probably 6+ months before your API appears in
distributions and starts getting used in real world
Worst case: only then will bugs be reported and design
faults become clear

As user-space programmers start to employ APIs in
real-world applications

But that’s too late...
(Probably can’t change ABI...)

Need as much feedback as possible before API is released

Man-pages: discovery, feedback, and commit messages c©2016 Kerrisk | The feedback loop 65 / 91

Strive to shorten worst-case
feedback loop

⇒
Publicize API design

as widely + early as possible

Man-pages: discovery, feedback, and commit messages c©2016 Kerrisk | The feedback loop 66 / 91

Shortening the feedback loop

Ideally, do all of the following before API release (1/2):
Write a detailed specification

Elaborate full range of inputs for all arguments

Elaborate consequent behavior and resulting output

Consider interactions with signals, threads, fork(), execve()

Write example programs that fully demonstrate API

Email relevant mailing lists and, especially, relevant people
CC linux-api@vger.kernel.org

As per Documentation/SubmitChecklist...
Alerts interested parties of API changes:

C library projects, man-pages, LTP, trinity, kselftest, LSB,
tracing projects, and user-space programmers

https://www.kernel.org/doc/man-pages/linux-api-ml.html

Man-pages: discovery, feedback, and commit messages c©2016 Kerrisk | The feedback loop 67 / 91

Shortening the feedback loop

Ideally, do all of the following before API release (2/2):
For good karma + more publicity: write an LWN.net article

Good way of reaching end users of your API
Ask readers for feedback

http://lwn.net/op/AuthorGuide.lwn

Man-pages: discovery, feedback, and commit messages c©2016 Kerrisk | The feedback loop 68 / 91

Outline

1 Introduction
2 man-pages: history and current state
3 man-pages: challenges
4 The challenges of API design
5 Mitigations
6 Mitigations: unit tests
7 Mitigations: specifications
8 Mitigations: write a real application
9 Mitigations: documentation
10 The problem of discovery
11 The feedback loop
12 The perfect kernel commit message
13 Concluding thoughts
14 Addendum: cgroup mountinfo mails

The perfect kernel commit
message?

Okay; perfection is in the eye of the beholder

Perfection = better documentation and better
user-space APIs

Man-pages: discovery, feedback, and commit messages c©2016 Kerrisk | The perfect kernel commit message 70 / 91

Three iterations
of a patch series that I happened

to get interested in recently

Man-pages: discovery, feedback, and commit messages c©2016 Kerrisk | The perfect kernel commit message 71 / 91

Version 1

Subject: Show virtualized dentry root in mountinfo for cgroupfs
Date: Sun , 17 Apr 2016 15:04:30 -0500
From: Serge Hallyn

With the current cgroup namespace patches , the root dentry path of a
mount as shown in /proc/self/mountinfo is the full global cgroup
path. It is common for userspace to use /proc/self/mountinfo to
search for cgroup mountpoints , and expect the root dentry path to
relate to the cgroup paths in /proc/self/cgroup. Patch 2 in this
set therefore virtualizes the root dentry path relative to the
reader ’s cgroup namespace root.

For a people in the know (perhaps a few in CC), the above
might be clear

For idiots me, it’s far from clear what this is about
There’s value in assuming there are lots of idiots people
short on time out there

Some of them might be able to help you

Man-pages: discovery, feedback, and commit messages c©2016 Kerrisk | The perfect kernel commit message 72 / 91

Version 2

After some offlist conversations with Serge
Subject: [PATCH] mountinfo: implement show_path for kernfs and cgroup
Date: Thu , 5 May 2016 10:20:58 -0500
From: Serge Hallyn

Short explanation:

When showing a cgroupfs entry in mountinfo , show the path of the mount
root dentry relative to the reader’s cgroup namespace root.

Long version:

When a uid 0 task which is in freezer cgroup /a/b, unshares a new cgroup
namespace , and then mounts a new instance of the freezer cgroup , the new
mount will be rooted at /a/b. The root dentry field of the mountinfo
entry will show ’/a/b’.
[38 more lines omitted]

Better, but...

Short version doesn’t really explain user-space problem that
is being solved

Long version could still break things down rather more clearly

Man-pages: discovery, feedback, and commit messages c©2016 Kerrisk | The perfect kernel commit message 73 / 91

Version 3

After more conversation with Serge
Subject: [PATCH] mountinfo: implement show_path for kernfs and cgroup
Date: Mon , 9 May 2016 09:59:55 -0500
From: Serge Hallyn

Patch summary:

When showing a cgroupfs entry in mountinfo , show the path of the mount
root dentry relative to the reader’s cgroup namespace root.

Short explanation (courtesy of mkerrisk):

If we create a new cgroup namespace , then we want both
/proc/self/cgroup and /proc/self/mountinfo to show cgroup paths that
are correctly virtualized with respect to the cgroup mount point.
Previous to this patch , /proc/self/cgroup shows the right info ,
but /proc/self/mountinfo does not.

["Long version" As before]

I.e., include a short summary of the user-space problem
Best tailored to an audience that is naïve about the domain

Short explanation here might even be enough to give a
random user-space programmer a clue what this is about

Man-pages: discovery, feedback, and commit messages c©2016 Kerrisk | The perfect kernel commit message 74 / 91

Version 3

But there’s more

Subject: [PATCH] mountinfo: implement show_path for kernfs and cgroup
Date: Mon , 9 May 2016 09:59:55 -0500
[...]

Example (by mkerrisk):

[94 lines of shell sessions plus explanations]

A detailed example:
Complete walk through starting from scratch: shell
commands + explanations

Demonstration of the problem as it exists without the patch

Demonstration of the same command sequence on a patched
kernel, showing how it fixes problem

Did this to make sure I understand, but it’s exactly the info
many others need for understanding

Man-pages: discovery, feedback, and commit messages c©2016 Kerrisk | The perfect kernel commit message 75 / 91

Overkill?

You might argue that this is overkill
I’d argue that it makes a whole lot of people’s lives easier

Including mine

And you (the kernel developer) probably made your own life
easier too

More reviewers, more feedback, better/faster feedback

And when you come back to this later, you will be able to
understand what you did and why

Man-pages: discovery, feedback, and commit messages c©2016 Kerrisk | The perfect kernel commit message 76 / 91

Who should do this for each patch?

You know the answer
It doesn’t scale for me to do this

One person has all the requisite knowledge: you, the original
developer

You will have done all the thinking, and (hopefully) testing

Just need to elaborate that in writing

And the less knowledge you assume in your audience, the
wider that audience can be

Man-pages: discovery, feedback, and commit messages c©2016 Kerrisk | The perfect kernel commit message 77 / 91

Summary: why you should be doing this

This is about:
Making you think harder about the API

Making you do careful walk-through testing

Showing others what you mean in detail

Lowering the bar to understanding

Letting discovery happen earlier and more easily

Broadening your reviewer base

Man-pages: discovery, feedback, and commit messages c©2016 Kerrisk | The perfect kernel commit message 78 / 91

Summary: when you should be doing this

Feedback about API bugs that arrives after mainline release
is usually too late...
Many (most?) API changes that are interesting have a long
gestation

I.e., many patch iterations
E.g., memory protection keys:

First patch submission in May 2015

Merged in Linux 4.9-rc1

Mainline release in December 2016

The long development window that precedes release is an
opportunity...
Don’t leave it to late patch iterations to make your commit
message “rich”

Lengthen the feedback window: do it from the beginning

Man-pages: discovery, feedback, and commit messages c©2016 Kerrisk | The perfect kernel commit message 79 / 91

Outline

1 Introduction
2 man-pages: history and current state
3 man-pages: challenges
4 The challenges of API design
5 Mitigations
6 Mitigations: unit tests
7 Mitigations: specifications
8 Mitigations: write a real application
9 Mitigations: documentation
10 The problem of discovery
11 The feedback loop
12 The perfect kernel commit message
13 Concluding thoughts
14 Addendum: cgroup mountinfo mails

Doing it right

Jeff Layton, OFD locks, Linux 3.15 (commit 5d50ffd7c31):

“Open file description locks”
Fix serious design problems with POSIX record locks

(POSIX record locks are essentially unreliable in the
presence of any library that works with files)

Did everything nearly perfectly, in terms of developing
feature

Man-pages: discovery, feedback, and commit messages c©2016 Kerrisk | Concluding thoughts 81 / 91

Doing it right

Jeff Layton, OFD locks, Linux 3.15 (commit 5d50ffd7c31):
Clearly explained rationale and changes in commit message
Provided example programs
Publicized the API

Mailing lists

LWN.net article (http://lwn.net/Articles/586904/)

Wrote a man pages patch
(Feedback led to renaming of constants and feature)

Engaged with glibc developers (patches for glibc headers +
manual)

Refined patches in face of review

Maintainers were unresponsive ⇒ resubmitted many times

Triggered work to get API into next POSIX standard
Made it all look simple

Man-pages: discovery, feedback, and commit messages c©2016 Kerrisk | Concluding thoughts 82 / 91

Thanks!
mtk@man7.org

Slides at http://man7.org/conf/

Linux/UNIX system programming training (and more)
http://man7.org/training/

The Linux Programming Interface, http://man7.org/tlpi/

Outline

1 Introduction
2 man-pages: history and current state
3 man-pages: challenges
4 The challenges of API design
5 Mitigations
6 Mitigations: unit tests
7 Mitigations: specifications
8 Mitigations: write a real application
9 Mitigations: documentation
10 The problem of discovery
11 The feedback loop
12 The perfect kernel commit message
13 Concluding thoughts
14 Addendum: cgroup mountinfo mails

Version 2 (complete mail)

Subject: [PATCH] mountinfo: implement show_path for kernfs and cgroup
Date: Thu , 5 May 2016 10:20:58 -0500
From: Serge Hallyn

Short explanation:

When showing a cgroupfs entry in mountinfo , show the path of the mount
root dentry relative to the reader ’s cgroup namespace root.

Long version:

When a uid 0 task which is in freezer cgroup /a/b, unshares a new cgroup
namespace , and then mounts a new instance of the freezer cgroup , the new
mount will be rooted at /a/b. The root dentry field of the mountinfo
entry will show ’/a/b’.

cat > /tmp/do1 << EOF
mount -t cgroup -o freezer freezer /mnt
grep freezer /proc/self/mountinfo
EOF

unshare -Gm bash /tmp/do1
> 330 160 0:34 / /sys/fs/cgroup/freezer rw ,nosuid ,nodev ,noexec ,relatime - cgroup cgroup rw,freezer
> 355 133 0:34 /a/b /mnt rw ,relatime - cgroup freezer rw,freezer

The task’s freezer cgroup entry in /proc/self/cgroup will simply show
’/’:

Man-pages: discovery, feedback, and commit messages c©2016 Kerrisk | Addendum: cgroup mountinfo mails 84 / 91

Version 2 (complete mail)

grep freezer /proc/self/cgroup
9: freezer :/

If instead the same task simply bind mounts the /a/b cgroup directory ,
the resulting mountinfo entry will again show /a/b for the dentry root.
However in this case the task will find its own cgroup at /mnt/a/b,
not at /mnt:

mount --bind /sys/fs/cgroup/freezer/a/b /mnt
130 25 0:34 /a/b /mnt rw,nosuid ,nodev ,noexec ,relatime shared :21 - cgroup cgroup rw,freezer

In other words , there is no way for the task to know , based on what is
in mountinfo , which cgroup directory is its own.

With this patch , the dentry root field in mountinfo is shown relative
to the reader ’s cgroup namespace. I.e.:

unshare -Gm bash /tmp/do1
> 330 160 0:34 / /sys/fs/cgroup/freezer rw ,nosuid ,nodev ,noexec ,relatime - cgroup cgroup rw,freezer
> 355 133 0:34 / /mnt rw,relatime - cgroup freezer rw ,freezer

This way the task can correlate the paths in /proc/pid/cgroup to
/proc/self/mountinfo , and determine which cgroup directory (in any
mount which the reader created) corresponds to the task.

Man-pages: discovery, feedback, and commit messages c©2016 Kerrisk | Addendum: cgroup mountinfo mails 85 / 91

Version 3 (complete mail)

Subject: [PATCH] mountinfo: implement show_path for kernfs and cgroup
Date: Mon , 9 May 2016 09:59:55 -0500
From: Serge Hallyn

Patch summary:

When showing a cgroupfs entry in mountinfo , show the path of the mount
root dentry relative to the reader ’s cgroup namespace root.

Short explanation (courtesy of mkerrisk):

If we create a new cgroup namespace , then we want both /proc/self/cgroup
and /proc/self/mountinfo to show cgroup paths that are correctly
virtualized with respect to the cgroup mount point. Previous to this
patch , /proc/self/cgroup shows the right info , but /proc/self/mountinfo
does not.

Long version:

When a uid 0 task which is in freezer cgroup /a/b, unshares a new cgroup
namespace , and then mounts a new instance of the freezer cgroup , the new
mount will be rooted at /a/b. The root dentry field of the mountinfo
entry will show ’/a/b’.

cat > /tmp/do1 << EOF
mount -t cgroup -o freezer freezer /mnt
grep freezer /proc/self/mountinfo

Man-pages: discovery, feedback, and commit messages c©2016 Kerrisk | Addendum: cgroup mountinfo mails 86 / 91

Version 3 (complete mail)

EOF

unshare -Gm bash /tmp/do1
> 330 160 0:34 / /sys/fs/cgroup/freezer rw ,nosuid ,nodev ,noexec ,relatime - cgroup cgroup rw,freezer
> 355 133 0:34 /a/b /mnt rw ,relatime - cgroup freezer rw,freezer

The task’s freezer cgroup entry in /proc/self/cgroup will simply show
’/’:

grep freezer /proc/self/cgroup
9: freezer :/

If instead the same task simply bind mounts the /a/b cgroup directory ,
the resulting mountinfo entry will again show /a/b for the dentry root.
However in this case the task will find its own cgroup at /mnt/a/b,
not at /mnt:

mount --bind /sys/fs/cgroup/freezer/a/b /mnt
130 25 0:34 /a/b /mnt rw,nosuid ,nodev ,noexec ,relatime shared :21 - cgroup cgroup rw,freezer

In other words , there is no way for the task to know , based on what is
in mountinfo , which cgroup directory is its own.

Example (by mkerrisk):

First , a little script to save some typing and verbiage:

cat cgroup_info.sh

Man-pages: discovery, feedback, and commit messages c©2016 Kerrisk | Addendum: cgroup mountinfo mails 87 / 91

Version 3 (complete mail)

#!/bin/sh
echo -e "\t/proc/self/cgroup :\t$(cat /proc/self/cgroup | grep freezer)"
cat /proc/self/mountinfo | grep freezer |

awk ’{print "\ tmountinfo :\t\t" $4 "\t" $5}’
#

Create cgroup , place this shell into the cgroup , and look at the state
of the /proc files:

mkdir -p /sys/fs/cgroup/freezer/a/b
echo $$ > /sys/fs/cgroup/freezer/a/b/cgroup.procs
echo $$
2653
cat /sys/fs/cgroup/freezer/a/b/cgroup.procs
2653 # Our shell
14254 # cat(1)
./ cgroup_info.sh

/proc/self/cgroup: 10: freezer :/a/b
mountinfo: / /sys/fs/cgroup/freezer

Create a shell in new cgroup and mount namespaces. The act of creating
a new cgroup namespace causes the process ’s current cgroups directories
to become its cgroup root directories. (Here , I’m using my own version
of the "unshare" utility , which takes the same options as the util -linux
version):

~mtk/tlpi/code/ns/unshare -Cm bash

Man-pages: discovery, feedback, and commit messages c©2016 Kerrisk | Addendum: cgroup mountinfo mails 88 / 91

Version 3 (complete mail)

Look at the state of the /proc files:

./ cgroup_info.sh
/proc/self/cgroup: 10: freezer :/
mountinfo: / /sys/fs/cgroup/freezer

The third entry in /proc/self/cgroup (the pathname of the cgroup inside
the hierarchy) is correctly virtualized w.r.t. the cgroup namespace ,
which is rooted at /a/b in the outer namespace.

However , the info in /proc/self/mountinfo is not for this cgroup
namespace , since we are seeing a duplicate of the mount from the
old mount namespace , and the info there does not correspond to the
new cgroup namespace. However , trying to create a new mount still
doesn ’t show us the right information in mountinfo:

mount --make -rslave / # Prevent our mount operations
propagating to other mountns

mkdir -p /mnt/freezer # Create a new mount point
umount /sys/fs/cgroup/freezer # Discard old mount
mount -t cgroup -o freezer freezer /mnt/freezer/
./ cgroup_info.sh

/proc/self/cgroup: 7: freezer :/
mountinfo: /a/b /mnt/freezer

The act of creating a new cgroup namespace caused the process ’s
current freezer directory , "/a/b", to become its cgroup freezer root
directory. In other words , the pathname directory of the directory

Man-pages: discovery, feedback, and commit messages c©2016 Kerrisk | Addendum: cgroup mountinfo mails 89 / 91

Version 3 (complete mail)

within the newly mounted cgroup filesystem should be "/",
but mountinfo wrongly shows us "/a/b". The consequence of this is
that the process in the cgroup namespace cannot correctly construct
the pathname of its cgroup root directory from the information in
/proc/PID/mountinfo.

With this patch , the dentry root field in mountinfo is shown relative
to the reader ’s cgroup namespace. So the same steps as above:

mkdir -p /sys/fs/cgroup/freezer/a/b
echo $$ > /sys/fs/cgroup/freezer/a/b/cgroup.procs
./ cgroup_info.sh

/proc/self/cgroup: 10: freezer :/a/b
mountinfo: / /sys/fs/cgroup/freezer

~mtk/tlpi/code/ns/unshare -Cm bash
./ cgroup_info.sh

/proc/self/cgroup: 10: freezer :/
mountinfo: /../.. /sys/fs/cgroup/freezer

mount --make -rslave /
mkdir -p /mnt/freezer
umount /sys/fs/cgroup/freezer
mount -t cgroup -o freezer freezer /mnt/freezer/
./ cgroup_info.sh

/proc/self/cgroup: 10: freezer :/
mountinfo: / /mnt/freezer

ls /mnt/freezer/
cgroup.clone_children freezer.parent_freezing freezer.state tasks

Man-pages: discovery, feedback, and commit messages c©2016 Kerrisk | Addendum: cgroup mountinfo mails 90 / 91

Version 3 (complete mail)

cgroup.procs freezer.self_freezing notify_on_release
echo $$
3164
cat /mnt/freezer/cgroup.procs
2653 # First shell that placed in this cgroup
3164 # Shell started by ’unshare ’
14197 # cat(1)

Man-pages: discovery, feedback, and commit messages c©2016 Kerrisk | Addendum: cgroup mountinfo mails 91 / 91

	Man-pages: discovery, feedback, and commit messages
	Introduction
	man-pages: history and current state
	man-pages: challenges
	The challenges of API design
	Mitigations
	Mitigations: unit tests
	Mitigations: specifications
	Mitigations: write a real application
	Mitigations: documentation
	The problem of discovery
	The feedback loop
	The perfect kernel commit message
	Concluding thoughts
	Addendum: cgroup mountinfo mails

