CRIU in HPC

Adrian Reber
areber@redhat.com

August 20, 2015
Background

- Computer Simulation used for product development
 - Faster development cycles
 - More predictable quality
- Goal: Increase model complexity/granularity
 - Increase number of nodes
- New challenges for system management
 - New approaches necessary
Virtualization in HPC

- Every CPU cycle counts
- Hypervisor overhead for the CPU is low, but exists
 - → para-virtualization
 - → container based virtualization
- Overhead in combination with I/O even higher (→ emulation)
- Migration difficult in combination with out-of-band communication
Process Migration

- Remove overhead by directly migrating processes
- Handle out-of-band communication in software layer
Migration Methods - Postcopy

Initiate Migration

Source System

Destination System

Network Connection

Page Fault

Figure: Postcopy Migration
Migration Methods - Checkpoint/Restart

- There are many existing Checkpoint/Restart implementations
- Low impact on the operating system
Checkpoint/Restart Requirements

- As transparent as possible
- Not too invasive
- Upstream inclusion
Berkeley Lab Checkpoint Restart - BLCR

- Used in many fault tolerance projects
- Almost transparent (pre-loading or re-compilation)
- Implemented as external kernel module
Distributed MultiThreaded Checkpointing - DMTCP

- Implemented in user-space
- Requires pre-loading
- Intercepts many system calls
Kernel-Space-Based

- Developed with the goal of upstream inclusion
- Developed in cooperation with the Linux kernel community
- Transparent solution without pre-loading or re-compilation
- Solution to complicated → needs changes in every Linux kernel subsystem
User-Space-Based - CRIU

- Developed with the goal of upstream inclusion
- Transparent solution without pre-loading or re-compilation
- Uses existing interfaces as much as possible
- Most functionality resides in user-space
Parallel Process Migration

- Based on Open MPI
 - Open license and community
 - Flexible fault tolerance framework
Parallel Process Migration - Start

Figure: Parallel Process Migration - Start
Parallel Process Migration - Complete Node

Figure: Parallel Process Migration - Complete Node
Parallel Process Migration - Load Balancing

Figure: Parallel Process Migration - Load Balancing
Conclusion

- Transparent process migration works (based on CRIU)
- Open MPI extended to support CRIU
- Parallel process migration work in progress