

Read Write Semaphores

● Allows for multiple readers and only one
writer

● They are fair locks
● New readers will block if a writer is

blocked

Read Write Semaphores

● Real Time converts them to a simple
mutex

● Serializes readers
● mainline can run parallel

● Affects various work loads drastically
● Note, mainline can be forced to serialize

readers if a writer is blocked
● Remember, they are fair locks

Read Write Semaphores

● Biggest culprit for performance issues
● mmap_sem
● Page faults
● Lots of threads (Java!)
● Peter Zijlstra has worked to avoid taking

mmap_sem on page faults

● There may be other areas where rwsems
are bad

Read Write Semaphores

● Priority inheritance is hard
● Doing PI for multiple tasks is even harder

● was done before and was really
complex

● Tried to keep the fast past
– use cmpxchg() to grab lock quickly when

uncontended

Read Write Semaphores

● Priority inheritance is hard
● Doing PI for multiple tasks is even harder

● was done before and was really
complex

● Tried to keep the fast past
– use cmpxchg() to grab lock quickly when

uncontended

● “train wreck!” - Thomas Gleixner

Read Write Semaphores

● Revisit Priority Inheritance
● Forget the fast path (rwsems suck anyway)
● Greatly simplifies the algorithm

● All must take the internal spinlock before
taking lock

● But still complex, but reasonable

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6

