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CPUIDLE : the menu governor

● Tries to predict the next event on the system

● Does statistics on each CPU for the sleep 
duration

● Weighting the idle states regarding the pending 
IOs



 

CPUIDLE : the menu governor

● Source of wakeups:
● IRQ

– Timer, IOs, keyboard, …
● IPI

– Mostly generated by the scheduler

But most of the interrupts are coming from:
● Timers, IOs and rescheduling IPIs



 

CPUIDLE : the menu governor

● It takes all the source of interrupts without 
distinction:
➔ Is it up to the scheduler to predict the scheduler 

behavior (IPI reschedule) ?

● What about if a task is moved to another CPU ?
➔ Can stay to a very shallow state for seconds for 

nothing because the statistics are different



 

How can we improve the situation ?

● Why not focus on event which are predictable ?
➔ Timers
➔ IO

● Let the scheduler to take the right decision 
with the IPI reschedule

● … and consider the rest as noise preventing us 
to be accurate



 

Why an IO could be predictable ?

The duration of an IO is inside a reasonable 
interval, with repeating pattern 

● The tasks are blocked on IO, hence these 
latencies information can be tied with it
●  The information can follow the task when this one 

is migrated 



 

SSD behavior



 

HDD behavior



 

Observations

● Let's group the different latencies into buckets

● Experiment with different bucket size : 50us, 
100us, 200us and 500us

● And observe the distribution : how many times 
a bucket is hit ?



 

SSD – 4KB Random RW



 

HDD – 4KB Random RW



 

Observations - Conclusions

● The smaller the bucket is, the more there are 
buckets
➔ Reduce probability to estimate the right bucket

● On slow media, there is an important deviation 
from the average latency

● The 200us bucket size shows a interesting 
trade-off between the number of buckets and 
the accuracy

● We can rely on these observations to build a 
model to predict the next IO



 

IO latency tracking infrastructure

● Each time a task is unblocked after an IO 
completion, measure the duration

● Add this latency to the IO latency tracking 
infrastructure

● Next time the task is blocked on a IO, ask the 
IO latency tracking infrastructure the guessed 
blocking time

● When going to idle, take the remaining time to 
be blocked on an IO as part of the equation to 
compute the sleep duration



 

IO latency tracking infrastructure

io_schedule

Scheduler IO latency trackingTask

io_latency_begin

io_latency_guess +
io_latency_insert_node

wakeup

io_latency_end

io_latency_delete_node +
io_latency_add



 

IO latency tracking infrastructure

● Group the latencies into buckets, representing 
an interval (200us)

● Each bucket has an index
● Each index gives the bucket's interval

● index : 0   => [0, 199]
● index : 10 => [2000, 2199]
● Index : 5   => [1000, 1199]



 

IO latency tracking infrastructure

bucket2

io_latency_add(413us) bucket3

bucket6

bucket12

find_bucket

413%200 = 2

update_history(bucket2,413us)

bucket2.hits++
bucket2.suchits++
bucket2.avg = ...



 

IO latency tracking infrastructure

● How do we guess the next blocking time ?
● Buckets are sorted
● Position in the list shows the history (first 

happening more, last happening less)
● Buckets have the number of hits and the position 

in the list weight these numbers

● Compute a score with the position in the list and 
the number of hits with a decaying function



 

IO latency tracking infrastructure

bucket2.hits = 123

bucket3.hits = 321

bucket6.hits = 12

bucket12.hits = 32

first

last

Score = nrhits / (pos + 1)²

Score = 123 / (0+1)² = 123

Score = 321 / (1+1)² = 80 

Score = 12 / (2+1)² = 1 

Score = 12 / (3+1)² = 0 

Bucket 2 is the next expected IO latency



 

IO latency tracking infrastructure

● What happens when there are several tasks 
blocked on an IO ?
● A red-black tree per cpu
● The number of elements of this tree is the number 

of tasks blocked on a IO
● Each node is the guessed IO duration for the 

corresponding task
● Left most node is the smaller guessed IO duration



 

IO latency tracking infrastructure + 
CPUidle

● When entering idle we have now:
● The next timer event which is reliable 

(next_timer_event)
● The next IO completion (next_io_event)

● The next event is:
next_event = min(next_timer_event, next_io_event)



 

IO latency tracking + CPUidle

● Choosing the idle state is straighforward:

for (i = 0; i < drv->state_count; i++) {
struct cpuidle_state *s = &drv->states[i];
struct cpuidle_state_usage *su = &dev->states_usage[i];

if (s->disabled || su->disable)
continue;

if (s->target_residency > next_event)
continue;

if (s->exit_latency > latency_req)
continue;

idle_state = i;
}



 

The big picture

Idle task

Task waiting
 for a timer

Task waiting
for an IO

IO latency
tracking

t1

Timer framework

tn+5
tn+4
tn+3

tn+1
tn+2

tn

CPUIDLE

idle_for(min(t1, tn))

Basic
selection loop

Backend driversleep

Choose idle state



 

Some results

● Tools used to measure:
● Some extra infos added to sysfs for each cpu

– Over predicted : the sleep duration was shorter
– Under predicted : the sleep duration was longer

● Idlestat : a tool computing the idle state statistics
– http://git.linaro.org/power/idlestat.git

● Iolatsimu: a tool implementing the prediction 
algorithm and randomly read/write a file
– http://git.linaro.org/people/daniel.lezcano/iolatsimu.git

http://git.linaro.org/people/daniel.lezcano/iolatsimu.git


 

Some results

● Tests done under certain circumstances
● Process pinned on one cpu in order to prevent 

migration
● Tried on the media described at the beginning of 

the documentation

● For each block size measure the prediction 
regarding the idle state which has been choose



 

Some results

residency = 10

residency = 70

residency = 40

residency = 20

residency = 150

Shallow

Deep
3. Effective sleep time = 45

1. Effective sleep time = 15

2. Effective sleep time = 35

IO latency framework + timer 
give an expected sleep time 

of 30us

1. and 3. are failed predictions, 2. is a right prediction



 

SDD results - 4KB



 

HDD results - 4KB



 

Conclusion

● A noticeable improvement in terms of 
prediction, more than 30% under some 
circumstances

● The resulting design makes the idle state 
predictions within the scheduler
➔ Idling decision could be integrated in a smarter 

way



 

Next steps
● Improve the IO latency tracking framework 

algorithm, detect repeating patterns, ...
● Investigate pointless IPI with IO completion
● Increase the test coverage with all benchmarks
● Fix the IO completions measurement probe 

points
● Make the latency per device
● Improve the scheduler to take smarter 

decision regarding idle



 

THANKS !



 

Introduction

● New architecture : HMP or big.Little
● The scheduler is only aware of SMP
● We need to integrate the different power 

management subsystems into the scheduler
● Cpufreq, pm qos, cpuidle, …

● This presentation is about integrating cpuidle 
with the scheduler



 

CPUIDLE

● CPUidle is a framework divided into three parts

CPUidle Generic 
framework

Idle task

Governor

PM Back end driver

Select idle state

Enter idle state



 

CPUIDLE : the generic framework

● Provides an API:

● To register a driver and a governor
● To ask for the governor suggestion
● To enter idle with the state abstraction

● No algorithm



 

CPUIDLE : the back end drivers

● It gives the abstraction for the complex PM 
code

● Very generic for some hardware based on 
firmware abstraction (eg. ACPI, PSCI, ...)

● Very hardware dependent and complex if 
directly handled in the kernel (eg. ARM SoC 
specific drivers)



 

CPUIDLE : the governors

● Two governors used today:
● Ladder with periodic tick configuration:

–  for server focused on performance

● Menu with nohz configuration: 
– for most of the platforms trying to provide the best 

trade-off between performance and energy saving



 

Experimentation

● Latency measurements for:
● SSD 6Gb/s
● HDD 6Gb/s

● … with different block sizes
● From 4KB to 512KB



 

SSD behavior



 

HDD behavior



 

SSD – 8KB Random RW



 

SSD – 16KB Random RW



 

SSD – 32KB Random RW



 

SSD – 64KB Random RW



 

SSD – 128KB Randow RW



 

SSD – 256KB Random RW



 

SSD – 512KB Randow RW



 

HDD – 8KB Random RW



 

HDD – 16KB Random RW



 

HDD – 32KB Random RW



 

HDD – 64KB Randow RW



 

HDD – 128KB Randow RW



 

HDD – 256KB Randow RW



 

HDD – 512KB Random RW



 

SDD results – 8KB



 

SSD results - 16KB



 

SSD results - 32KB



 

SDD results - 64KB



 

SDD results - 128KB



 

SDD results - 256KB



 

SDD results - 512KB



 

HDD results - 8KB



 

HDD results - 16KB



 

HDD results - 32KB



 

HDD results - 64KB



 

HDD results - 128KB



 

HDD results - 256KB



 

HDD results - 512KB
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