

IO latency tracking

Daniel Lezcano (dlezcano)
Linaro Power Management Team

CPUIDLE : the menu governor

● Tries to predict the next event on the system

● Does statistics on each CPU for the sleep
duration

● Weighting the idle states regarding the pending
IOs

CPUIDLE : the menu governor

● Source of wakeups:
● IRQ

– Timer, IOs, keyboard, …
● IPI

– Mostly generated by the scheduler

But most of the interrupts are coming from:
● Timers, IOs and rescheduling IPIs

CPUIDLE : the menu governor

● It takes all the source of interrupts without
distinction:
➔ Is it up to the scheduler to predict the scheduler

behavior (IPI reschedule) ?

● What about if a task is moved to another CPU ?
➔ Can stay to a very shallow state for seconds for

nothing because the statistics are different

How can we improve the situation ?

● Why not focus on event which are predictable ?
➔ Timers
➔ IO

● Let the scheduler to take the right decision
with the IPI reschedule

● … and consider the rest as noise preventing us
to be accurate

Why an IO could be predictable ?

The duration of an IO is inside a reasonable
interval, with repeating pattern

● The tasks are blocked on IO, hence these
latencies information can be tied with it
● The information can follow the task when this one

is migrated

SSD behavior

HDD behavior

Observations

● Let's group the different latencies into buckets

● Experiment with different bucket size : 50us,
100us, 200us and 500us

● And observe the distribution : how many times
a bucket is hit ?

SSD – 4KB Random RW

HDD – 4KB Random RW

Observations - Conclusions

● The smaller the bucket is, the more there are
buckets
➔ Reduce probability to estimate the right bucket

● On slow media, there is an important deviation
from the average latency

● The 200us bucket size shows a interesting
trade-off between the number of buckets and
the accuracy

● We can rely on these observations to build a
model to predict the next IO

IO latency tracking infrastructure

● Each time a task is unblocked after an IO
completion, measure the duration

● Add this latency to the IO latency tracking
infrastructure

● Next time the task is blocked on a IO, ask the
IO latency tracking infrastructure the guessed
blocking time

● When going to idle, take the remaining time to
be blocked on an IO as part of the equation to
compute the sleep duration

IO latency tracking infrastructure

io_schedule

Scheduler IO latency trackingTask

io_latency_begin

io_latency_guess +
io_latency_insert_node

wakeup

io_latency_end

io_latency_delete_node +
io_latency_add

IO latency tracking infrastructure

● Group the latencies into buckets, representing
an interval (200us)

● Each bucket has an index
● Each index gives the bucket's interval

● index : 0 => [0, 199]
● index : 10 => [2000, 2199]
● Index : 5 => [1000, 1199]

IO latency tracking infrastructure

bucket2

io_latency_add(413us) bucket3

bucket6

bucket12

find_bucket

413%200 = 2

update_history(bucket2,413us)

bucket2.hits++
bucket2.suchits++
bucket2.avg = ...

IO latency tracking infrastructure

● How do we guess the next blocking time ?
● Buckets are sorted
● Position in the list shows the history (first

happening more, last happening less)
● Buckets have the number of hits and the position

in the list weight these numbers

● Compute a score with the position in the list and
the number of hits with a decaying function

IO latency tracking infrastructure

bucket2.hits = 123

bucket3.hits = 321

bucket6.hits = 12

bucket12.hits = 32

first

last

Score = nrhits / (pos + 1)²

Score = 123 / (0+1)² = 123

Score = 321 / (1+1)² = 80

Score = 12 / (2+1)² = 1

Score = 12 / (3+1)² = 0

Bucket 2 is the next expected IO latency

IO latency tracking infrastructure

● What happens when there are several tasks
blocked on an IO ?
● A red-black tree per cpu
● The number of elements of this tree is the number

of tasks blocked on a IO
● Each node is the guessed IO duration for the

corresponding task
● Left most node is the smaller guessed IO duration

IO latency tracking infrastructure +
CPUidle

● When entering idle we have now:
● The next timer event which is reliable

(next_timer_event)
● The next IO completion (next_io_event)

● The next event is:
next_event = min(next_timer_event, next_io_event)

IO latency tracking + CPUidle

● Choosing the idle state is straighforward:

for (i = 0; i < drv->state_count; i++) {
struct cpuidle_state *s = &drv->states[i];
struct cpuidle_state_usage *su = &dev->states_usage[i];

if (s->disabled || su->disable)
continue;

if (s->target_residency > next_event)
continue;

if (s->exit_latency > latency_req)
continue;

idle_state = i;
}

The big picture

Idle task

Task waiting
 for a timer

Task waiting
for an IO

IO latency
tracking

t1

Timer framework

tn+5
tn+4
tn+3

tn+1
tn+2

tn

CPUIDLE

idle_for(min(t1, tn))

Basic
selection loop

Backend driversleep

Choose idle state

Some results

● Tools used to measure:
● Some extra infos added to sysfs for each cpu

– Over predicted : the sleep duration was shorter
– Under predicted : the sleep duration was longer

● Idlestat : a tool computing the idle state statistics
– http://git.linaro.org/power/idlestat.git

● Iolatsimu: a tool implementing the prediction
algorithm and randomly read/write a file
– http://git.linaro.org/people/daniel.lezcano/iolatsimu.git

http://git.linaro.org/people/daniel.lezcano/iolatsimu.git

Some results

● Tests done under certain circumstances
● Process pinned on one cpu in order to prevent

migration
● Tried on the media described at the beginning of

the documentation

● For each block size measure the prediction
regarding the idle state which has been choose

Some results

residency = 10

residency = 70

residency = 40

residency = 20

residency = 150

Shallow

Deep
3. Effective sleep time = 45

1. Effective sleep time = 15

2. Effective sleep time = 35

IO latency framework + timer
give an expected sleep time

of 30us

1. and 3. are failed predictions, 2. is a right prediction

SDD results - 4KB

HDD results - 4KB

Conclusion

● A noticeable improvement in terms of
prediction, more than 30% under some
circumstances

● The resulting design makes the idle state
predictions within the scheduler
➔ Idling decision could be integrated in a smarter

way

Next steps
● Improve the IO latency tracking framework

algorithm, detect repeating patterns, ...
● Investigate pointless IPI with IO completion
● Increase the test coverage with all benchmarks
● Fix the IO completions measurement probe

points
● Make the latency per device
● Improve the scheduler to take smarter

decision regarding idle

THANKS !

Introduction

● New architecture : HMP or big.Little
● The scheduler is only aware of SMP
● We need to integrate the different power

management subsystems into the scheduler
● Cpufreq, pm qos, cpuidle, …

● This presentation is about integrating cpuidle
with the scheduler

CPUIDLE

● CPUidle is a framework divided into three parts

CPUidle Generic
framework

Idle task

Governor

PM Back end driver

Select idle state

Enter idle state

CPUIDLE : the generic framework

● Provides an API:

● To register a driver and a governor
● To ask for the governor suggestion
● To enter idle with the state abstraction

● No algorithm

CPUIDLE : the back end drivers

● It gives the abstraction for the complex PM
code

● Very generic for some hardware based on
firmware abstraction (eg. ACPI, PSCI, ...)

● Very hardware dependent and complex if
directly handled in the kernel (eg. ARM SoC
specific drivers)

CPUIDLE : the governors

● Two governors used today:
● Ladder with periodic tick configuration:

– for server focused on performance

● Menu with nohz configuration:
– for most of the platforms trying to provide the best

trade-off between performance and energy saving

Experimentation

● Latency measurements for:
● SSD 6Gb/s
● HDD 6Gb/s

● … with different block sizes
● From 4KB to 512KB

SSD behavior

HDD behavior

SSD – 8KB Random RW

SSD – 16KB Random RW

SSD – 32KB Random RW

SSD – 64KB Random RW

SSD – 128KB Randow RW

SSD – 256KB Random RW

SSD – 512KB Randow RW

HDD – 8KB Random RW

HDD – 16KB Random RW

HDD – 32KB Random RW

HDD – 64KB Randow RW

HDD – 128KB Randow RW

HDD – 256KB Randow RW

HDD – 512KB Random RW

SDD results – 8KB

SSD results - 16KB

SSD results - 32KB

SDD results - 64KB

SDD results - 128KB

SDD results - 256KB

SDD results - 512KB

HDD results - 8KB

HDD results - 16KB

HDD results - 32KB

HDD results - 64KB

HDD results - 128KB

HDD results - 256KB

HDD results - 512KB

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66

