
Packing, spreading
and scheduling latency

20th september, 2013

V0.1

Content

• Spreading for performance
● An example with cyclictest
● Latency results

• Why such difference ?
● Topology of a system
● Idle state and wake up latency
● Back to our latency results

• How to select the right CPU ?
• Is it enough ?
• Packing tasks for saving power

● Packing tasks for saving energy
● Power CPU topology

• Create a list of packing CPUs
● Example of packing policy
● Updating the list

• Is it enough ?

Spreading for performance
● Spreading tasks in the system

● Default policy of the scheduler
● Minimize ressources sharing

● Often the best policy
● Long running tasks
● Memory / CPU intensive workloads

● But some use cases don't follow the rule
● Shared ressources are not the critical path
● Light workload

An example with cyclictest
● Use various intervals in the range [1ms:2ms]

● Use both tasks placement policy
● Spread tasks on CPUs (default behavior)
● Pack tasks on 1 CPUs

● Enable/Disable C-state

● 10 runs per configuration
● Get min/max/avg and stdev of the average latency of each run

Latency results

spread

packed

shallow c-state

Why such difference ?

Topology of a system
● Have a look at the topology of a typical system

19/09/2013Presentation Title

Idle state and wake up latency
● Generally, we can powergate/power down at all level:

● Each core can be power gated independently
● The cluster/package with/without the associated PLLs, power domains and

regulators.
● Nearly the complete system when all masters are off

● Wakeup latency increases with powered-down area
● PLLs state
● regulators state
● peripherals state

0 few ms

Back to our latency results

%
cpu0

avg
idle
cpu0

cpu0

%
cpu1

avg
idle
cpu1

cpu1

%
cpu2

avg
idle
cpu2

cpu2

C0 30 0,36 4125 0 0 0 0

C1 62 1,57 1974 100 0 100 0

%
cpu0

avg
idle

cpu0

cpu0

%
cpu1

avg
idle

cpu1

cpu1

%
cpu2

avg
idle

cpu2

cpu2

C0 55 0.53 5315 0 0.4 73 0 0.4 32

C1 40 1.12 1787 98 2.02 2427 98 1.92 2564

● Idle statistics for cyclictest -q -t 3 -i 1800-d 100 -e 1000000 -D 5
● Spread

● Packed T1 : 2500 cycles T2 : 2632 cyclesT0 : 2778 cycles

How to select the right CPU ?
● Take wake up latency of core into account

● Select the idle CPU with shortest latency in the LLC
● Compare runnable_avg of the task with the cost of wake up latency

● weighted_cpuload
● Used to compare the load of CPUs
● All idle CPUs have a null load

● Modify the weighted_cpuload of Idle CPUs
● No more null but reflect the effort to wake it up

● Don't choose the 1st idle CPU
● Use the weighted_cpuload for selecting an idle CPU

Is it enough ?

Packing tasks for saving power
● Scheduler knows when CPUs share

● Core capacities
● Ressources like the cache

● But it doesn't know their power dependency

● Packing makes sense only if there is a gain in
● Latency as seen previously
● Power consumption by increasing powered down area

Packing tasks for saving energy
● Optimizing the power down area

● With minimal increase of the running time

Power CPU topology
● Add a new flag in sched_domain : SD_SHARE_POWERDOMAIN

● Domain member shares their power down capabilities

● Let architecture describes their topology
● New function arch_sd_local_flags (cpu, flag)
● Return per-cpu power dependency in a domain
● Used during the init of sched_domain's levels

● Use DT to describe power dependency
● Add a new property for CPU topology description
● power-gate= <0/1>

Create a list of packing CPUs
● Pack tasks only if you can power down/gate the forced idle CPUs

● Use all cores that share their power state

● Use group of CPUs with lowest capacity first
● Assuming they are the most power efficient

● Use 1st CPU in the mask
● Default policy in the scheduler

Example of packing policy
● Full sharing of power state (defaut configuration)

CPU0-7

Example of packing policy
● Can power gate cluster independently

CPU2-3,6-7CPU0-1,4-5

Example of packing policy

● Each core can be power gated independently

CPU1,5CPU0,4 CPU3,7CPU2,6

Updating the list
● Periodically evaluate system activity

● Use runnable_avg_sum/period of CPUs
● Use CPU's capacity (cpu_power)
● Sync activity monitoring with load balance

● Deduct how many CPUs needed
● Use CPUs' capacity (cpu_power)

● Then ensure that a target CPUs is in this list
● check CPU selection at wake up
● Define a buddy CPU that will handle the activity of non packing CPU
● New task can use a CPU out of the list

Is it enough ?

Questions ?

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21

