
1

Update on big.LITTLE
scheduling experiments

Morten Rasmussen
Technology Researcher

2

Agenda

 Why is big.LITTLE different from SMP?

 Summary of previous experiments on emulated big.LITTLE.

 New results for big.LITTLE in silicon (ARM TC2).

 Next steps...

3

Why is big.LITTLE different from SMP?

 SMP:
 Scheduling goal is to distribute work evenly across all available CPUs

to get maximum performance.

 If we have DVFS support we can even save power this way too.

 big.LITTLE:
 Scheduling goal is to maximize power efficiency with only a modest

performance sacrifice.

 Task should be distributed unevenly. Only critical tasks should
execute on big CPUs to minimize power consumption.

 Contrary to SMP, it matters where a task is scheduled.

4

 Example: Android UI render thread execution time.

What is the (mainline) status?

4 core SMP

2+2 big.LITTLE (emulated)

It matters where a task is scheduled.

5

 Example: Android UI render thread execution time.

What is the (mainline) status?

4 core SMP

2+2 big.LITTLE (emulated)

It matters where a task is scheduled.

big.LITTLE aware scheduling

6

big.LITTLE hardware platform

 We are now in the process of investigating scheduling issues
on real big.LITTLE hardware.

 ARM TC2 big.LITTLE test chip:
 Two CPU clusters: 2x Cortex-A15 (big) + 3x Cortex-A7 (LITTLE)

 Per-cluster L2 caches, cache coherent interconnect

 No GPU

 cpufreq support

 cpuidle support

 Linux SMP across all five cores

Cortex-A15
MPCore

L2 Cache

CPU

Cortex-A7
MPCore

L2 Cache

CCI-400 Coherent Interconnect

CPU
CPU CPU

Interrupt Control

7

Running on real HW: ARM TC2

 Bbench on Android:

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

5

10

15

20

25

30

35

40 SurfaceFlinger (50 runs)
SMP
HMP

Exec. time [s]

O
cc

u
re

n
ce

8

Mainline Linux Scheduler (CFS)

 We need proper big.LITTLE/heterogeneous system support
in CFS.
 Load-balancing is currently based on an expression of CPU load

which is basically:

 The scheduler does not know how much CPU time is consumed by
each task.

 The current scheduler can handle distributing tasks fairly evenly
based on cpu_power for big.LITTLE system, but this is not what we
want for power efficiency.

 Embedded use cases focus mainly on responsiveness. It is therefore
important that each task is scheduled on an appropriate cpu to get
the best performance and power efficiency.

cpu load=cpu power⋅∑
task

priotask

9

Tracking task load

 The load contribution of a particular task is needed to make
an appropriate scheduling decision.

 We have experimented internally with identifying task
characteristics based on the tasks’ time slice utilization.

 Meanwhile, Paul Turner (Google) posted a RFC patch set on
LKML with similar features.
 LKML: https://lkml.org/lkml/2012/2/1/763

 Focusing in improving fair group scheduling, but very useful for task
placement on asymmetric systems.

 Can potentially be used for aspects of power aware scheduling too.

 This is now out in v2 (v3?). Mainline plans?

https://lkml.org/lkml/2012/2/1/763

10

Entity load-tracking summary

 Tracks the time each task spends on the runqueue (executing
or waiting) approximately every ms. Note that: trunqueue ≥ texecuting

 The contributed load is a geometric series over the history of
time spent on the runqueue scaled by the task priority.

 Also task cpu usage and runqueue load.

Task load

Task state

Executing Sleep

Load decay

11

big.LITTLE scheduling: First stab

 Policy: Keep all task on little cores unless:
1. The runqueue residency is above a fixed threshold, and

2. The task priority is default or higher (nice ≤ 0)

 Goal: Only use big cores when it is necessary.
 Frequent, but low intensity task are assumed to suffer minimally by

being stuck on a little core.

 High intensity low priority tasks will not be scheduled on big cores to
finish earlier when it is not necessary.

 Tasks can migrate to match current requirements.Migrate to big

Migrate to LITTLE

Task 1 state

Task 2 state

Task loads

12

Experimental Implementation
 Scheduler modifications:

 Apply PJTs’ load-tracking patch set.

 Set up big and little sched_domains with
no load-balancing between them.

 select_task_rq_fair() checks task load
history to select appropriate target CPU
for tasks waking up.

 Add forced migration mechanism to push
of the currently running task to big core
similar to the existing active load
balancing mechanism.

 Periodically check
(run_rebalance_domains()) current task on
little runqueues for tasks that need to be
forced to migrate to a big core.

 Note: There are known issues related to
global load-balancing.

LL LL
BB BB

load_balance load_balance

select_task_rq_fair()/
forced migration

Forced migration latency:
~160 us on vexpress-a9
(migration->schedule)

13

Example: Bbench on Android

 Filesystem: Android ICS (4.0)

 Browser benchmark
 Renders a new webpage every ~50s using JavaScript.

 Scrolls each page after a fixed delay.

 Three main threads involved:

 WebViewCoreThread: Webkit rendering thread.

 SurfaceFlinger: Android UI rendering thread.

 android.browser: Browser thread

14

Bbench@TC2 SMP example analysis

15

Bbench@TC2 HMP example analysis

16

Bbench@TC2: WebViewCoreThread

 Bbench on Android:

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
0

5

10

15

20

25

30

35
WebViewCoreThread (50 runs)

SMP
HMP

Exec. time [s]

F
re

q
u

e
n

cy

17

Bbench@TC2: android.browser

 Bbench on Android:

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0

5

10

15

20

25

30

35

40
android.browser (50 runs)

SMP
HMP

Exec. time [s]

F
re

q
u

e
n

cy

18

Next step: Reimplementation of asymmetric task
placement
 Experimental implementation disables the existing load

balancing mechanism to override it.

 The current public (open Linaro repository) patch set is not
meant for direct adoption, but serves as a tool for
demonstration and evaluation.

 Ideally, a similar functionality should be integrated with the
existing load balancer instead.

 Investigate the need for more control over task migrations
(extra knobs). PJT's patches might need tuning knobs.

 Work on generalizing the patch set to support multiple cpu
clusters is currently ongoing.
 We only have two clusters (big.LITTLE) for testing.

 Different target cluster selection policies for multi-cluster systems might
be possible, but this is not our main focus for now.

19

Next step: Spread/Fill task placement

 Ongoing LKML discussions about power aware scheduling
after SCHED_MC was removed.

 A spread/fill task distribution tuning knob is needed per cpu
cluster for asymmetric systems like big.LITTLE.
 For low leakage cpus spreading might be the best

power/performance trade-off.

 For high performance cpus filling might be better since leakage can
be minimized.

 Task load could potentially be used for better cpu filling, but
more investigation is needed.
 The current implementation of tracked load might not be ideal as the

individual task load is affected by the total cpu load.

 A scale invariant task load metric might be needed, but is not trivial to
define.

20

Next step: Integration with cpuidle

 Task load tracking gives the scheduler much more
information about the tasks and the cpu load.

 Use this information to improve power aware scheduling in
general. Not just for asymmetric systems.

 Example:
 When waking up an idle cpu, select the one in the cheapest C-state.

 Related:
 Selection of appropriate IRQ affinity. If cpu 0 is big, we need to be

able to specify a different default target.

21

Next step: cpufreq intersections
 With task load tracking, the scheduler is in a good position to predict

the cpu load every time a task is scheduled.

 Instead of waiting for cpufreq to figure out that the load has
increased, it might be more efficient to drive/hint cpufreq from the
scheduler.

 This would allow much more responsive and aggressive frequency
scaling. Frequency transition latency is well below the schedule
period on ARM TC2.

 Counterproductive scheduling behaviour can be avoided, e.g. the
scheduler migrates tasks to another (idle) cpu before cpufreq has
had a chance to increase the frequency.

 This applies to SMP system as well.

 For HMP, we also need to consider per cluster policies.
Interactive/performance policy configuration on A7/A15 has shown
good results in the lab for ARM TC2.

22

Questions?

	Research Update on big.LITTLE MP Scheduling
	Slide 2
	Why is big.LITTLE different from SMP?
	What is the (mainline) status?
	Slide 5
	Slide 6
	Slide 7
	Mainline Linux Scheduler
	Tracking task load
	Entity load-tracking summary
	big.LITTLE scheduling: First stab
	Experimental Implementation
	Bbench on Android
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

