
1

Update on big.LITTLE
scheduling experiments

Morten Rasmussen
Technology Researcher

2

Agenda

 Why is big.LITTLE different from SMP?

 Summary of previous experiments on emulated big.LITTLE.

 New results for big.LITTLE in silicon (ARM TC2).

 Next steps...

3

Why is big.LITTLE different from SMP?

 SMP:
 Scheduling goal is to distribute work evenly across all available CPUs

to get maximum performance.

 If we have DVFS support we can even save power this way too.

 big.LITTLE:
 Scheduling goal is to maximize power efficiency with only a modest

performance sacrifice.

 Task should be distributed unevenly. Only critical tasks should
execute on big CPUs to minimize power consumption.

 Contrary to SMP, it matters where a task is scheduled.

4

 Example: Android UI render thread execution time.

What is the (mainline) status?

4 core SMP

2+2 big.LITTLE (emulated)

It matters where a task is scheduled.

5

 Example: Android UI render thread execution time.

What is the (mainline) status?

4 core SMP

2+2 big.LITTLE (emulated)

It matters where a task is scheduled.

big.LITTLE aware scheduling

6

big.LITTLE hardware platform

 We are now in the process of investigating scheduling issues
on real big.LITTLE hardware.

 ARM TC2 big.LITTLE test chip:
 Two CPU clusters: 2x Cortex-A15 (big) + 3x Cortex-A7 (LITTLE)

 Per-cluster L2 caches, cache coherent interconnect

 No GPU

 cpufreq support

 cpuidle support

 Linux SMP across all five cores

Cortex-A15
MPCore

L2 Cache

CPU

Cortex-A7
MPCore

L2 Cache

CCI-400 Coherent Interconnect

CPU
CPU CPU

Interrupt Control

7

Running on real HW: ARM TC2

 Bbench on Android:

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

5

10

15

20

25

30

35

40 SurfaceFlinger (50 runs)
SMP
HMP

Exec. time [s]

O
cc

u
re

n
ce

8

Mainline Linux Scheduler (CFS)

 We need proper big.LITTLE/heterogeneous system support
in CFS.
 Load-balancing is currently based on an expression of CPU load

which is basically:

 The scheduler does not know how much CPU time is consumed by
each task.

 The current scheduler can handle distributing tasks fairly evenly
based on cpu_power for big.LITTLE system, but this is not what we
want for power efficiency.

 Embedded use cases focus mainly on responsiveness. It is therefore
important that each task is scheduled on an appropriate cpu to get
the best performance and power efficiency.

cpu load=cpu power⋅∑
task

priotask

9

Tracking task load

 The load contribution of a particular task is needed to make
an appropriate scheduling decision.

 We have experimented internally with identifying task
characteristics based on the tasks’ time slice utilization.

 Meanwhile, Paul Turner (Google) posted a RFC patch set on
LKML with similar features.
 LKML: https://lkml.org/lkml/2012/2/1/763

 Focusing in improving fair group scheduling, but very useful for task
placement on asymmetric systems.

 Can potentially be used for aspects of power aware scheduling too.

 This is now out in v2 (v3?). Mainline plans?

https://lkml.org/lkml/2012/2/1/763

10

Entity load-tracking summary

 Tracks the time each task spends on the runqueue (executing
or waiting) approximately every ms. Note that: trunqueue ≥ texecuting

 The contributed load is a geometric series over the history of
time spent on the runqueue scaled by the task priority.

 Also task cpu usage and runqueue load.

Task load

Task state

Executing Sleep

Load decay

11

big.LITTLE scheduling: First stab

 Policy: Keep all task on little cores unless:
1. The runqueue residency is above a fixed threshold, and

2. The task priority is default or higher (nice ≤ 0)

 Goal: Only use big cores when it is necessary.
 Frequent, but low intensity task are assumed to suffer minimally by

being stuck on a little core.

 High intensity low priority tasks will not be scheduled on big cores to
finish earlier when it is not necessary.

 Tasks can migrate to match current requirements.Migrate to big

Migrate to LITTLE

Task 1 state

Task 2 state

Task loads

12

Experimental Implementation
 Scheduler modifications:

 Apply PJTs’ load-tracking patch set.

 Set up big and little sched_domains with
no load-balancing between them.

 select_task_rq_fair() checks task load
history to select appropriate target CPU
for tasks waking up.

 Add forced migration mechanism to push
of the currently running task to big core
similar to the existing active load
balancing mechanism.

 Periodically check
(run_rebalance_domains()) current task on
little runqueues for tasks that need to be
forced to migrate to a big core.

 Note: There are known issues related to
global load-balancing.

LL LL
BB BB

load_balance load_balance

select_task_rq_fair()/
forced migration

Forced migration latency:
~160 us on vexpress-a9
(migration->schedule)

13

Example: Bbench on Android

 Filesystem: Android ICS (4.0)

 Browser benchmark
 Renders a new webpage every ~50s using JavaScript.

 Scrolls each page after a fixed delay.

 Three main threads involved:

 WebViewCoreThread: Webkit rendering thread.

 SurfaceFlinger: Android UI rendering thread.

 android.browser: Browser thread

14

Bbench@TC2 SMP example analysis

15

Bbench@TC2 HMP example analysis

16

Bbench@TC2: WebViewCoreThread

 Bbench on Android:

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
0

5

10

15

20

25

30

35
WebViewCoreThread (50 runs)

SMP
HMP

Exec. time [s]

F
re

q
u

e
n

cy

17

Bbench@TC2: android.browser

 Bbench on Android:

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0

5

10

15

20

25

30

35

40
android.browser (50 runs)

SMP
HMP

Exec. time [s]

F
re

q
u

e
n

cy

18

Next step: Reimplementation of asymmetric task
placement
 Experimental implementation disables the existing load

balancing mechanism to override it.

 The current public (open Linaro repository) patch set is not
meant for direct adoption, but serves as a tool for
demonstration and evaluation.

 Ideally, a similar functionality should be integrated with the
existing load balancer instead.

 Investigate the need for more control over task migrations
(extra knobs). PJT's patches might need tuning knobs.

 Work on generalizing the patch set to support multiple cpu
clusters is currently ongoing.
 We only have two clusters (big.LITTLE) for testing.

 Different target cluster selection policies for multi-cluster systems might
be possible, but this is not our main focus for now.

19

Next step: Spread/Fill task placement

 Ongoing LKML discussions about power aware scheduling
after SCHED_MC was removed.

 A spread/fill task distribution tuning knob is needed per cpu
cluster for asymmetric systems like big.LITTLE.
 For low leakage cpus spreading might be the best

power/performance trade-off.

 For high performance cpus filling might be better since leakage can
be minimized.

 Task load could potentially be used for better cpu filling, but
more investigation is needed.
 The current implementation of tracked load might not be ideal as the

individual task load is affected by the total cpu load.

 A scale invariant task load metric might be needed, but is not trivial to
define.

20

Next step: Integration with cpuidle

 Task load tracking gives the scheduler much more
information about the tasks and the cpu load.

 Use this information to improve power aware scheduling in
general. Not just for asymmetric systems.

 Example:
 When waking up an idle cpu, select the one in the cheapest C-state.

 Related:
 Selection of appropriate IRQ affinity. If cpu 0 is big, we need to be

able to specify a different default target.

21

Next step: cpufreq intersections
 With task load tracking, the scheduler is in a good position to predict

the cpu load every time a task is scheduled.

 Instead of waiting for cpufreq to figure out that the load has
increased, it might be more efficient to drive/hint cpufreq from the
scheduler.

 This would allow much more responsive and aggressive frequency
scaling. Frequency transition latency is well below the schedule
period on ARM TC2.

 Counterproductive scheduling behaviour can be avoided, e.g. the
scheduler migrates tasks to another (idle) cpu before cpufreq has
had a chance to increase the frequency.

 This applies to SMP system as well.

 For HMP, we also need to consider per cluster policies.
Interactive/performance policy configuration on A7/A15 has shown
good results in the lab for ARM TC2.

22

Questions?

	Research Update on big.LITTLE MP Scheduling
	Slide 2
	Why is big.LITTLE different from SMP?
	What is the (mainline) status?
	Slide 5
	Slide 6
	Slide 7
	Mainline Linux Scheduler
	Tracking task load
	Entity load-tracking summary
	big.LITTLE scheduling: First stab
	Experimental Implementation
	Bbench on Android
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

