Update on big.LITTLE
scheduling experiments
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Agenda

" Why is big.LITTLE different from SMP?

= Summary of previous experiments on emulated big.LITTLE.
" New results for big.LITTLE in silicon (ARM TC2).
" Next steps...
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Why is big.LITTLE different from SMP?

= SMP:

" Scheduling goal is to distribute work evenly across all available CPUs
to get maximum performance.

" If we have DVFS support we can even save power this way too.

" big.LITTLE:

" Scheduling goal is to maximize power efficiency with only a modest
performance sacrifice.

" Task should be distributed unevenly. Only critical tasks should
execute on big CPUs to minimize power consumption.

" Contrary to SMP, it matters where a task is scheduled.
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What is the (mainline) status?

" Example: Android Ul render thread execution time.

SurfaceFlinger exec. time histogram (100 runs)
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What is the (mainline) status?

" Example: Android Ul render thread execution time.

SurfaceFlinger exec. time histogram (100 runs)
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big.LITTLE hardware platform

" We are now Iin the process of investigating scheduling issues
on real big.LITTLE hardware.

" ARM TC2 big.LITTLE test chip:
" Two CPU clusters: 2x Cortex-Al15 (big) + 3x Cortex-A7 (LITTLE)
" Per-cluster L2 caches, cache coherent interconnect
" No GPU o
" cpufreq support
" cpuidle support
" Linux SMP across all five cores
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Running on real HW: ARM TC2

" Bbench on Android:
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Mainline Linux Scheduler (CFS)

" We need proper big.LITTLE/heterogeneous system support
In CFS.

" Load-balancing is currently based on an expression of CPU load
which is basically:

CPU ,q.qa = CPU power Z prlotask

task
" The scheduler does not know how much CPU time is consumed by

each task.

" The current scheduler can handle distributing tasks fairly evenly
based on cpu_power for big.LITTLE system, but this is not what we
want for power efficiency.

" Embedded use cases focus mainly on responsiveness. It is therefore
Important that each task is scheduled on an appropriate cpu to get
the best performance and power efficiency.
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Tracking task load

" The load contribution of a particular task is needed to make
an appropriate scheduling decision.

" We have experimented internally with identifying task
characteristics based on the tasks’ time slice utilization.

" Meanwhile, Paul Turner (Google) posted a RFC patch set on
LKML with similar features.

" LKML:

" Focusing in improving fair group scheduling, but very useful for task
placement on asymmetric systems.

" Can potentially be used for aspects of power aware scheduling too.
" This is now out in v2 (v3?). Mainline plans?
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https://lkml.org/lkml/2012/2/1/763

Entity load-tracking summary

" Tracks the time each task spends on the runqueue (executing
or waiting) approximately every ms. Note that: t >t

funqueue executing

" The contributed load is a geometric series over the history of
time spent on the runqueue scaled by the task priority.

" Also task cpu usage and rungqueue load.

Load ldecay
Task load
Task state I
0.4 0.6 time (<] 0.8 1.0‘ ' 1.2'
Executing Sleep
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big.LITTLE scheduling: First stab

" Policy: Keep all task on little cores unless:
1. The runqueue residency is above a fixed threshold, and
2. The task priority is default or higher (nice < 0)

" Goal: Only use big cores when it is necessary.

Task loads

Task 2 state

Task 1 state

Frequent, but low intensity task are assumed to suffer minimally by
being stuck on a little core.

High intensity low priority tasks will not be scheduled on big cores to
finish earlier when it is not necessary.

Tasks can migrate to match current requirements.migrate to big
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Experimental Implementation

= Scheduler modifications:
= Apply PJTs’ load-tracking patch set.

" Set up big and little sched _domains with
no load-balancing between them.
select_task_rq_fair()/

" select_task rg_fair() checks task load forced migration
history to select appropriate target CPU
for tasks waking up. m
" Add forced migration mechanism to push Ioa}bﬁmce IWe

of the currently running task to big core J "
similar to the existing active load SR T

: : L L
balancing mechanism.
" Periodically check
(run_rebalance domains()) current task on
little runqueues for tasks that need to be
forced to migrate to a big core. Forced migration latency:
) ~160 us on vexpress-a9
" Note: There are known issues related to (migration->schedule)

global load-balancing.

! ®
S | ' The Architecture for the Digital VWorld® ARM



Example: Bbench on Android

" Filesystem: Android ICS (4.0)

" Browser benchmark
" Renders a new webpage every ~50s using JavaScript.
= Scrolls each page after a fixed delay.
" Three main threads involved:
" WebViewCoreThread: Webkit rendering thread.
" SurfaceFlinger: Android Ul rendering thread.
" android.browser: Browser thread
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Bbench@TC2 SMP example analysis
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Bbench@TC2 HMP example analysis

Idle time breakdown
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Bbench@TC2: WebViewCoreThread

" Bbench on Android:

WebViewCoreThread (50 runs)
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Bbench@TC2: android.browser

" Bbench on Android:

40 android.browser (50 runs)
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Next step: Reimplementation of asymmetric task

placement

" Experimental implementation disables the existing load
balancing mechanism to override it.

" The current public (open Linaro repository) patch set is not
meant for direct adoption, but serves as a tool for
demonstration and evaluation.

" |deally, a similar functionality should be integrated with the
existing load balancer instead.

" Investigate the need for more control over task migrations
(extra knobs). PJT's patches might need tuning knobs.

" Work on generalizing the patch set to support multiple cpu
clusters is currently ongoing.

" We only have two clusters (big.LITTLE) for testing.

= Different target cluster selection policies for multi-cluster systems might
be possible, but this is not our main focus for now.
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Next step: Spread/Fill task placement

" Ongoing LKML discussions about power aware scheduling
after SCHED MC was removed.

= A spread/fill task distribution tuning knob is needed per cpu
cluster for asymmetric systems like big.LITTLE.

" For low leakage cpus spreading might be the best
power/performance trade-off.

" For high performance cpus filling might be better since leakage can
be minimized.

" Task load could potentially be used for better cpu filling, but
more investigation is needed.

" The current implementation of tracked load might not be ideal as the
individual task load is affected by the total cpu load.

" A scale invariant task load metric might be needed, but is not trivial to
define.
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Next step: Integration with cpuidle

" Task load tracking gives the scheduler much more
Information about the tasks and the cpu load.

" Use this information to improve power aware scheduling in
general. Not just for asymmetric systems.

" Example:
" When waking up an idle cpu, select the one in the cheapest C-state.

" Related:

" Selection of appropriate IRQ affinity. If cpu O is big, we need to be
able to specify a different default target.
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Next step: cpufreq intersections

= With task load tracking, the scheduler is in a good position to predict
the cpu load every time a task is scheduled.

= |nstead of waiting for cpufreq to figure out that the load has
Increased, it might be more efficient to drive/hint cpufreq from the
scheduler.

= This would allow much more responsive and aggressive frequency
scaling. Frequency transition latency is well below the schedule
period on ARM TC2.

= Counterproductive scheduling behaviour can be avoided, e.g. the
scheduler migrates tasks to another (idle) cpu before cpufreq has
had a chance to increase the frequency.

= This applies to SMP system as well.

= For HMP, we also need to consider per cluster policies.
Interactive/performance policy configuration on A7/A15 has shown
good results in the lab for ARM TC2.
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Questions?
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