Update on big.LITTLE
scheduling experiments

0
. A
oy f Morten Rasmussen
\d® The Arch'\r_ect"‘ R 0\(\A Technology Researcher
- aal | .
., L9
gt D‘g"t l J The Architecture for the Digital World® ARM

Agenda

" Why is big.LITTLE different from SMP?

= Summary of previous experiments on emulated big.LITTLE.
" New results for big.LITTLE in silicon (ARM TC2).
" Next steps...

eactV
Hld® The Archite”

o\
. D
- . D\%“t The Architecture for the Digital World® AR

Why is big.LITTLE different from SMP?

= SMP:

" Scheduling goal is to distribute work evenly across all available CPUs
to get maximum performance.

" If we have DVFS support we can even save power this way too.

" big.LITTLE:

" Scheduling goal is to maximize power efficiency with only a modest
performance sacrifice.

" Task should be distributed unevenly. Only critical tasks should
execute on big CPUs to minimize power consumption.

" Contrary to SMP, it matters where a task is scheduled.

®
The Architecture for the Digital VWorld® ARM

What is the (mainline) status?

" Example: Android Ul render thread execution time.

SurfaceFlinger exec. time histogram (100 runs)

90
M ca9_van (SMP)

l Hcad_van(b.L)
&0

4 core SMP —
70

60

It matters where a task is scheduled.
50

Occurence

40

30

/\ / 2+2 big.LITTLE (emulated)
A
-

8 8.5 9 95 10 105 11 115 12 125 13 135 14 145 15 155 16 165 17 175 18 185

Time [s]

20

10

The Architecture for the Digital World® ARM

What is the (mainline) status?

" Example: Android Ul render thread execution time.

SurfaceFlinger exec. time histogram (100 runs)
90

M ca9_van (SMP)
fca9_van(b.L)

|
80
ca9_blop(b.L)

4 core SMP —

~J
Q

=)
o

It matters where a task is scheduled.

u
Q

Occurence

<—__big.LITTLE aware scheduling

\\7/\ / 2+2 big.LITTLE (emulated)
A
\/\/—”\

8 8.5 9 85 10 105 11 115 12 125 13 135 14 145 15 155 16 165 17 175 18 185

Time [s]

B
o

30

20

10

The Architecture for the Digital World® ARM

big.LITTLE hardware platform

" We are now Iin the process of investigating scheduling issues
on real big.LITTLE hardware.

" ARM TC2 big.LITTLE test chip:
" Two CPU clusters: 2x Cortex-Al15 (big) + 3x Cortex-A7 (LITTLE)
" Per-cluster L2 caches, cache coherent interconnect
" No GPU o
" cpufreq support
" cpuidle support
" Linux SMP across all five cores

Interrupt Control

Cortex-Al5
MPCore

Cortex-A7
MPCore

CPU| |CPU

CPU CPU

L2 Cache L2 Cache

CCl-400 Coherent Interconnect

®
The Architecture for the Digital VWorld® ARM

Running on real HW: ARM TC2

" Bbench on Android:

40

SurfaceFlinger (50 runs)

B SMP
B HMP

35

30

N
)]

N
o

Occurence

=
(6

=
o

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Exec. time [s]

The Architecture for the Digital World® ARM

Mainline Linux Scheduler (CFS)

" We need proper big.LITTLE/heterogeneous system support
In CFS.

" Load-balancing is currently based on an expression of CPU load
which is basically:

CPU ,q.qa = CPU power Z prlotask

task
" The scheduler does not know how much CPU time is consumed by

each task.

" The current scheduler can handle distributing tasks fairly evenly
based on cpu_power for big.LITTLE system, but this is not what we
want for power efficiency.

" Embedded use cases focus mainly on responsiveness. It is therefore
Important that each task is scheduled on an appropriate cpu to get
the best performance and power efficiency.

g 1 ®
9 | The Architecture for the Digital VWorld® ARM

Tracking task load

" The load contribution of a particular task is needed to make
an appropriate scheduling decision.

" We have experimented internally with identifying task
characteristics based on the tasks’ time slice utilization.

" Meanwhile, Paul Turner (Google) posted a RFC patch set on
LKML with similar features.

" LKML:

" Focusing in improving fair group scheduling, but very useful for task
placement on asymmetric systems.

" Can potentially be used for aspects of power aware scheduling too.
" This is now out in v2 (v3?). Mainline plans?

®
The Architecture for the Digital VWorld® ARM

https://lkml.org/lkml/2012/2/1/763

Entity load-tracking summary

" Tracks the time each task spends on the runqueue (executing
or waiting) approximately every ms. Note that: t >t

funqueue executing

" The contributed load is a geometric series over the history of
time spent on the runqueue scaled by the task priority.

" Also task cpu usage and rungqueue load.

Load ldecay
Task load
Task state I
0.4 0.6 time (<] 0.8 1.0‘ ' 1.2'
Executing Sleep

! ®
S | ' The Architecture for the Digital VWorld® ARM

big.LITTLE scheduling: First stab

" Policy: Keep all task on little cores unless:
1. The runqueue residency is above a fixed threshold, and
2. The task priority is default or higher (nice < 0)

" Goal: Only use big cores when it is necessary.

Task loads

Task 2 state

Task 1 state

Frequent, but low intensity task are assumed to suffer minimally by
being stuck on a little core.

High intensity low priority tasks will not be scheduled on big cores to
finish earlier when it is not necessary.

Tasks can migrate to match current requirements.migrate to big

‘ | Migrate to LITTLE
\' \

P P T PN P O~ QI/\<
|] e

0.4 0.6 0.8 1.0 12

®
The Architecture for the Digital VWorld® ARM

Experimental Implementation

= Scheduler modifications:
= Apply PJTs’ load-tracking patch set.

" Set up big and little sched _domains with
no load-balancing between them.
select_task_rq_fair()/

" select_task rg_fair() checks task load forced migration
history to select appropriate target CPU
for tasks waking up. m
" Add forced migration mechanism to push Ioa}bﬁmce IWe

of the currently running task to big core J "
similar to the existing active load SR T

: : L L
balancing mechanism.
" Periodically check
(run_rebalance domains()) current task on
little runqueues for tasks that need to be
forced to migrate to a big core. Forced migration latency:
) ~160 us on vexpress-a9
" Note: There are known issues related to (migration->schedule)

global load-balancing.

! ®
S | ' The Architecture for the Digital VWorld® ARM

Example: Bbench on Android

" Filesystem: Android ICS (4.0)

" Browser benchmark
" Renders a new webpage every ~50s using JavaScript.
= Scrolls each page after a fixed delay.
" Three main threads involved:
" WebViewCoreThread: Webkit rendering thread.
" SurfaceFlinger: Android Ul rendering thread.
" android.browser: Browser thread

®
The Architecture for the Digital VWorld® ARM

Bbench@TC2 SMP example analysis

=100.0 ms
=100.0 ms

<80.0 ms
<80.0ms
=70.0ms
<60.0 ms
=50.0 ms
=40.0 ms
=30.0ms
=20.0ms
=10.0ms

—1
—1
—1
1
1
1
1
1
1
1
1
B e

Idle time breakdown

L (3) L (4) B (0) B (1)

L (2)

o o o o o o o o o o
[Ta] o un (=] 7] (=) [Ta] (=) u
=+ = mn Mmoo~ ™~ ~

[s] ewn

Switch to pid 0 (~idle)

B (0)

B (1)

L(4)

L (3)

L (2)

50000

Process runtime distribution

40000 -

30000
20000
10000

0 pid 0] saydMS

abelols-gsn
J3/Ias wasAs
l1abuijareuns
201U

jen

ssacold dde
195MOoUg ploJpue
odlabeuepmopuipp
1abeuemopuipy
24U 1 I0MIIAGDINA
£8-pealyl
vi-peadyl
TL-peaiyl
jelsusnsalnixal
J2bulj4areuns
Jualajaidpaleys
geananpadualialay
®@uaddopnnaniay
labeuepabeyoed
Jaymedsigindu)
29

1amesqOaYy
|pueHpunoib>oeg
JabeueyAIARDY

I
o
=

o

10|

(=] [=]
m ™~

[s]awn

2
@
i
Es
S
S
20
(&)
Q
=
)
e
NS
g
=)
]
Q
Q
=
=
2
<
Q
e
T

Bbench@TC2 HMP example analysis

Idle time breakdown

: : . : : B -1000ms
Bl -1000ms
- <890.0 ms
- <80.0 ms
- =70.0ms
- =60.0 ms
[<sooms
[<a00ms
[<s0oms
[] <20.0 ms
[] =10.0ms
- Exec
L (2) L (3) L (4) B (0) B (1)
Process runtime distribution
T L L 40000
I
e 35000
30000
(=]
=]
o 25000
o
)
w 20000 |
i)
=
£ 15000
a
17 10000
5000
5383555 L3 PR YBL 5h 588 L3 “L@
gEc 58592 aNNNREGEES S22 88
,:Ig ‘EC%E:%UUEUECU‘OE Ego
BTo ofS50505333c8885a ©_14
Ego _szisms_s_a_s_uzm-l UE &
>0 0 QwUU:‘UOJ-C-C-C-ngEEQ' Sow
S5 58gfE3TTTTe838s 543
58 ax S g3 & 5250 A >
&y E£356 © CERE

.

Switch to pid 0 (~idle)

L (3) L (4) B (0) B (1)

®
The Architecture for the Digital VWorld® ARM

Bbench@TC2: WebViewCoreThread

" Bbench on Android:

WebViewCoreThread (50 runs)

35

H SMP
B HMP

30

25

N
o

Frequency

[EY
ol

[EE
o

e A

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Exec. time [s]

& 1 ‘ The Architecture for the Digital World® ARM

Bbench@TC2: android.browser

" Bbench on Android:

40 android.browser (50 runs)
m SMP

B HMP
35

30

25

N
o

Frequency

15

10

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 2:
Exec. time [s]

The Architecture for the Digital World® ARM

Next step: Reimplementation of asymmetric task

placement

" Experimental implementation disables the existing load
balancing mechanism to override it.

" The current public (open Linaro repository) patch set is not
meant for direct adoption, but serves as a tool for
demonstration and evaluation.

" |deally, a similar functionality should be integrated with the
existing load balancer instead.

" Investigate the need for more control over task migrations
(extra knobs). PJT's patches might need tuning knobs.

" Work on generalizing the patch set to support multiple cpu
clusters is currently ongoing.

" We only have two clusters (big.LITTLE) for testing.

= Different target cluster selection policies for multi-cluster systems might
be possible, but this is not our main focus for now.

®
The Architecture for the Digital VWorld® ARM

Next step: Spread/Fill task placement

" Ongoing LKML discussions about power aware scheduling
after SCHED MC was removed.

= A spread/fill task distribution tuning knob is needed per cpu
cluster for asymmetric systems like big.LITTLE.

" For low leakage cpus spreading might be the best
power/performance trade-off.

" For high performance cpus filling might be better since leakage can
be minimized.

" Task load could potentially be used for better cpu filling, but
more investigation is needed.

" The current implementation of tracked load might not be ideal as the
individual task load is affected by the total cpu load.

" A scale invariant task load metric might be needed, but is not trivial to
define.

j | The Architecture for the Digital VWorld® ARM®

Next step: Integration with cpuidle

" Task load tracking gives the scheduler much more
Information about the tasks and the cpu load.

" Use this information to improve power aware scheduling in
general. Not just for asymmetric systems.

" Example:
" When waking up an idle cpu, select the one in the cheapest C-state.

" Related:

" Selection of appropriate IRQ affinity. If cpu O is big, we need to be
able to specify a different default target.

i ®
2 The Architecture for the Digital VWorld® ARM

Next step: cpufreq intersections

= With task load tracking, the scheduler is in a good position to predict
the cpu load every time a task is scheduled.

= |nstead of waiting for cpufreq to figure out that the load has
Increased, it might be more efficient to drive/hint cpufreq from the
scheduler.

= This would allow much more responsive and aggressive frequency
scaling. Frequency transition latency is well below the schedule
period on ARM TC2.

= Counterproductive scheduling behaviour can be avoided, e.g. the
scheduler migrates tasks to another (idle) cpu before cpufreq has
had a chance to increase the frequency.

= This applies to SMP system as well.

= For HMP, we also need to consider per cluster policies.
Interactive/performance policy configuration on A7/A15 has shown
good results in the lab for ARM TC2.

®
The Architecture for the Digital VWorld® ARM

Questions?

The Architecture for the Digital World® ARM

	Research Update on big.LITTLE MP Scheduling
	Slide 2
	Why is big.LITTLE different from SMP?
	What is the (mainline) status?
	Slide 5
	Slide 6
	Slide 7
	Mainline Linux Scheduler
	Tracking task load
	Entity load-tracking summary
	big.LITTLE scheduling: First stab
	Experimental Implementation
	Bbench on Android
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

