
Intel® Ethernet

A way towards
Lower Latency and
Jitter
Jesse Brandeburg

jesse.brandeburg@intel.com

• Jesse Brandeburg <jesse.brandeburg@intel.com>

−A senior Linux developer in the Intel LAN Access Division, producing the
Intel Ethernet product lines

−Has been with Intel since 1994, and has worked on the Linux e100, e1000,
e1000e, igb, ixgb, ixgbe drivers since 2002

−Jesse splits his time between solving customer issues, performance tuning
Intel's drivers, and bleeding edge development for the Linux networking
stack

BIO

2

• Contributors

−Anil Vasudevan, Eric Geisler, Mike Polehn, Jason Neighbors, Alexander
Duyck, Arun Ilango, Yadong Li, Eliezer Tamir

Acknowledgements

3

“The speed of light sucks.”
 - John Carmack

4

• NAPI is pretty good, but optimized for throughput

• Certain customers want extremely low end to end latency

−Cloud providers

−High Performance Computing (HPC)

−Financial Services Industry (FSI)

• The race to the lowest latency has sparked user-space stacks

−Most bypass the kernel stack

−Examples include OpenOnload® application acceleration,
Mellanox Messaging Accelerator (VMA), RoCEE/IBoE,
RDMA/iWarp, and others [1]

[1] see notes for links to above products

Current State

5

• Latency is high by default (especially for Ethernet)

• Jitter is unpredictable by default

Problem Statement

 Software Causes
• Scheduling/context switching of the process
• Interrupt balancing algorithms
• Interrupt rate settings
• Path length from receive to transmit

Hardware Causes
• # of fetches from memory
• Latency inside the network controller
• Interrupt propagation
• Power Management (NIC, PCIe, CPU)

6

Key sources today Solutions

Raw Hardware Latency New Hardware

Software Execution Latency Opportunity

Scheduling / Context Switching Opportunity

Interrupt Rebalancing Interrupt-to-core mapping

Interrupt Moderation/Limiting Minimize/Disable throttling (ITR=0)

Power Management Disable (or limit) CPU power management,
PCIe power management

Bus Utilization (jitter) Isolate device

Latency and Jitter Contributors

7

Key sources today Solutions

Raw Hardware Latency New Hardware

Software Execution Latency Opportunity

Scheduling / Context Switching Opportunity

Interrupt Rebalancing Interrupt-to-core mapping

Interrupt Moderation/Limiting Minimize/Disable throttling (ITR=0)

Power Management Disable (or limit) CPU power management,
PCIe power management

Bus Utilization (jitter) Isolate device

Latency and Jitter Contributors

8

Traditional Transaction Flow

1. App transmits thru sockets API
• Passed down to driver and h/w unblocked

• TX is “Fire and Forget”

2. App checks for receive

3. No immediate receive – thus block

4. Packet received & Interrupt generated
• Interrupt subject to Int Rate & Int Balancing

5. Driver passes to Protocol

6. Protocol/Sockets wakes App

7. App received data thru sockets API

8. Repeat

Sockets

Protocols

Device driver

NIC

1

1

1

1

1

2

3

4

4

5

6

7

Very inefficient for
low-latency traffic

9

Latency Breakdown 2.6.36

10

Latency Breakdown kernel v3.5

692

243

3064

356
529
360
480

0

1000

2000

3000

4000

5000

6000

7000

v3.5 Round Trip Packet Timings

Tx Driver

Tx Protocol

Tx Socket

Application

Rx Socket

Rx Protocol

Rx Driver

• Total: 5722 ns

11

Jitter Measurements
min/max in us measured by netperf

1

10

100

1000

10000

100000

1000000

10000000

udp_rr tcp_rr

arx-off-1 arx-off-1

3.9.15 3.9.15

Min_latency

Max_latency

12

Jitter Measurements
standard deviation measured by netperf

1

10

100

1000

10000

udp_rr tcp_rr

arx-off-1 arx-off-1

3.9.15 3.9.15

Stddev_latency netperf

Stddev_latency

13

• Improve the software latency and jitter by driving the receive
from user context

• Result

−The Low Latency Sockets proof of concept

Proposed Solution

14

• LLS is a software initiative to reduce networking latency and jitter
within the kernel

• Native protocol stack is enhanced with a low latency path in
conjunction with packet classification (queue picking) by the NIC

• Transparent to applications and benefits those sensitive to
unpredictable latency

• Top down busy-wait polling replaces interrupts for incoming
packets

Low Latency Sockets (LLS)

15

New Low-Latency Transaction Flow

1. App transmits thru sockets API
• Passed down to driver and h/w unblocked

• TX is “Fire and Forget”

2. App checks for data (receive)

3. Check device driver for pending packet (poll
starts)

4. Meanwhile, packet received to NIC

5. Driver processes pending packet
• Bypasses context switch & interrupt

6. Driver passes to Protocol

7. App receives data through sockets API

8. Repeat

Sockets

Protocols

Device driver

NIC

1

1

1

1

1

2

3

4

4

5

6

7

16

• Code developed on 2.6.36.2 kernel

• Initial numbers done with ixgbe driver from out of tree

• Includes lots of timing and debug code

• Currently reliant upon

−hardware flow steering

−one queue pair (Tx/Rx) per CPU

− Interrupt affinity configured

Proof of Concept

17

Proof of Concept Results (2.6.36.2)

18

Jitter Results
min/max latency in us, as measured by netperf

1

10

100

1000

10000

100000

1000000

10000000

udp_rr tcp_rr udp_rr tcp_rr

arx-off-1 arx-off-1 arx-off-90 arx-off-90

3.9.15 3.9.15 lls-r03 lls-r03

Min_latency

Max_latency

19

Jitter Results
standard deviation as measured by netperf

1

10

100

1000

10000

udp_rr tcp_rr udp_rr tcp_rr

arx-off-1 arx-off-1 arx-off-90 arx-off-90

3.9.15 3.9.15 lls-r03 lls-r03

Stddev_latency

Stddev_latency

20

• Unpalatable structure modifications
− struct sk_buff

− struct sk

• Dependency on driver or kernel implemented flow steering

• Current amount of driver code to implement
−Current work already in progress on a much simpler version

• Default enabled?
−How can we turn this on and off

−Don’t want a socket option – defeats the purpose

• Security issues?
−Application can now force hardware/memory reads – unlikely to be an issue

−The new poll runs in syscall context, which should be safe but we need to be
careful to not create a new vulnerability

−does this new implementation create other problems?

Possible Issues

21

• Work in progress includes

−Further simplified driver using a polling thread

−Port of the current code to v3.5

• Future work

−Post current v3.5 code to netdev (Q4 – 2012)

−Design and refactor based on comments

−Make sure new flow is measurable and debuggable

Current work

22

• Git tree posted at:

−https://github.com/jbrandeb/lls.git

• Branches

−v2.6.36.2_lls

−Original 2.6.36.2 based prototype

−v3.5.1_lls

−Port of code to v3.5.1 stable (all features may not work yet)

Code

23

https://github.com/jbrandeb/lls.git

jesse.brandeburg@intel.com

e1000-devel@lists.sourceforge.net

netdev@vger.kernel.org

Contact

24

mailto:jesse.brandeburg@intel.com
mailto:e1000-devel@lists.sourceforge.net
mailto:e1000-devel@lists.sourceforge.net
mailto:e1000-devel@lists.sourceforge.net
mailto:netdev@vger.kernel.org

•Customers want a low latency and low jitter solution

−We can make one native to the kernel

• LLS prototype shows a possible way forward

−Achieved lower latency and jitter

•Discussion

−What would you do differently?

−Do you want to help?

Summary

25

Backup

• Development-in-progress of a new in-kernel interface to allow
applications to achieve lower network latency and jitter

• Creates a new driver interface to allow an application to drive a poll
through the socket layer all the way down to the device driver

• Benefits are
−applications do not have to change

− Linux networking stack is not bypassed in any way

−Minimized latency of data to the application

−Much more predictable jitter

• The design, implementation and results from an early prototype will be
shown, and current efforts to refine, refactor, and upstream the design
will be discussed

• Affected areas include the core networking stack, and network drivers

Abstract

