Intel” Ethernet




BIO

* Jesse Brandeburg <jesse.brandeburg@intel.com>

A senior Linux developer in the Intel LAN Access Division, producing the
Intel Ethernet product lines

Has been with Intel since 1994, and has worked on the Linux e100, e1000,
e1000e, igb, ixghb, ixgbe drivers since 2002

Jesse splits his time between solving customer issues, performance tuning

Intel's drivers, and bleeding edge development for the Linux networking
stack




Acknowledgements

e Contributors

Anil Vasudevan, Eric Geisler, Mike Polehn, Jason Neighbors, Alexander
Duyck, Arun llango, Yadong Li, Eliezer Tamir




“The speed of light sucks.”
- John Carmack




Current State

* NAPI is pretty good, but optimized for throughput

* Certain customers want extremely low end to end latency
Cloud providers
High Performance Computing (HPC)
Financial Services Industry (FSI)

* The race to the lowest latency has sparked user-space stacks
Most bypass the kernel stack

Examples include OpenOnload® application acceleration,
Mellanox Messaging Accelerator (VMA), RoCEE/IBOE,
RDMA/iWarp, and others [1]

[1] see notes for links to above products




Problem Statement

e Latency is high by default (especially for Ethernet)
e Jitter is unpredictable by default

Software Causes Hardware Causes

* Scheduling/context switching of the process * # of fetches from memory

* Interrupt balancing algorithms * Latency inside the network controller
* Interrupt rate settings * Interrupt propagation

* Path length from receive to transmit * Power Management (NIC, PCle, CPU)




Latency and Jitter Contributors

Raw Hardware Latency New Hardware

Software Execution Latency Opportunity

Scheduling / Context Switching Opportunity

Interrupt Rebalancing Interrupt-to-core mapping

Interrupt Moderation/Limiting Minimize/Disable throttling (ITR=0)

Power Management Disable (or limit) CPU power management,

PCle power management

Bus Utilization (jitter) Isolate device




Latency and Jitter Contributors

Raw Hardware Latency New Hardware

Software Execution Latency Opportunity

Scheduling / Context Switching Opportunity

Interrupt Rebalancing Interrupt-to-core mapping

Interrupt Moderation/Limiting Minimize/Disable throttling (ITR=0)

Power Management Disable (or limit) CPU power management,

PCle power management

Bus Utilization (jitter) Isolate device




Traditional Transaction Flow

1. App transmits thru sockets API @@ ﬁ@
. Passed down to driver and h/w unblocked Sockets
e TXis “Fire and Forget” @ ! ! @Q
App checks for receive Protocols
No immediate receive — thus block @ U jf@)
Packet received & Interrupt generated Device driver
* Interrupt subject to Int Rate & Int Balancing @i} ﬁ 4
5. Driver passes to Protocol
6. Protocol/Sockets wakes App @l} ﬁ@
7. App received data thru sockets API \
8. Repeat Very inefficient for

low-latency traffic

=



Latency Breakdown 2.6.36

SW Latency Analysis
6000
5000
W TX Sockets
4000 B TX Protocol
@ 3000 m TX Driver
M RX Sockets
2000 m RX Protocol
1000 m RX Driver (includes scheduler)
0

Intel 82599




Latency Breakdown kernel v3.5

7000

6000

5000

4000

3000

2000

1000

v3.5 Round Trip Packet Timings

M Tx Driver
1 Tx Protocol
1 Tx Socket
1 Application
B Rx Socket
M Rx Protocol
@ Rx Driver

e Total: 5722 ns



Jitter Measurements
min/max in us measured by netperf

10000000

1000000

100000

10000

1000 H Min_latency

B Max_latency

100

10 -~

arx-off-1 arx-off-1

udp_rr tcp_rr

3.9.15




Jitter Measurements
standard deviation measured by netperf

Stddev_latency netperf

10000
1000
100
m Stddev_latency
10
1 -
udp_rr tep_rr
arx-off-1 arx-off-1
3.9.15 3.9.15




Proposed Solution

* Improve the software latency and jitter by driving the receive
from user context

e Result

The Low Latency Sockets proof of concept




Low Latency Sockets (LLS)

* LLS is a software initiative to reduce networking latency and jitter
within the kernel

* Native protocol stack is enhanced with a low latency path in
conjunction with packet classification (queue picking) by the NIC

* Transparent to applications and benefits those sensitive to
unpredictable latency

* Top down busy-wait polling replaces interrupts for incoming
packets




New Low-Latency Transaction Flow

1. App transmits thru sockets API

Passed down to driver and h/w unblocked
TX is “Fire and Forget”

App checks for data (receive)

Check device driver for pending packet (poll
starts)

Meanwhile, packet received to NIC
5. Driver processes pending packet

Bypasses context switch & interrupt

6. Driver passes to Protocol
7. App receives data through sockets API

8. Repeat

®
o 1@
ol £ 2

Protocols

DJl jf@g

Device driver

@i} ﬁ4
@i} ﬁ@




Proof of Concept

* Code developed on 2.6.36.2 kernel
* Initial numbers done with ixgbe driver from out of tree
* Includes lots of timing and debug code

* Currently reliant upon
hardware flow steering
one queue pair (Tx/Rx) per CPU

Interrupt affinity configured




Proof of Concept Results (2.6.36.2)

SW Latency Analysis

2.6.36.2

M TX Sockets

B TX Protocol

m TX Driver

M RX Sockets

® RX Protocol

m RX Driver (includes scheduler)

2.6.36.2_LL




Jitter Results
min/max latency in us, as measured by netperf

10000000

1000000

100000

10000

1000 - H Min_latency

B Max_latency

100 -

10 -~

udp_rr tcp_rr udp_rr tcp_rr
arx-off-1 arx-off-1 arx-off-90 arx-off-90

3.9.15 3.9.15 Is-r03 lIs-r03




Jitter Results
standard deviation as measured by netperf

Stddev_latency

10000
1000
100
B Stddev_latency
10
1 —J .
udp_rr tcp_rr udp_rr tcp_rr
arx-off-1 arx-off-1 arx-off-90 arx-off-90
3.9.15 3.9.15 lls-r03 lls-ro3




Possible Issues

e Unpalatable structure modifications
struct sk_buff
struct sk
* Dependency on driver or kernel implemented flow steering

e Current amount of driver code to implement
Current work already in progress on a much simpler version

e Default enabled?

How can we turn this on and off
Don’t want a socket option — defeats the purpose

 Security issues?

Application can now force hardware/memory reads — unlikely to be an issue

The new poll runs in syscall context, which should be safe but we need to be
careful to not create a new vulnerability

does this new implementation create other problems?




Current work

* Work in progress includes
Further simplified driver using a polling thread
Port of the current code to v3.5

* Future work

Post current v3.5 code to netdev (Q4 — 2012)
Design and refactor based on comments

Make sure new flow is measurable and debuggable




Code

* Git tree posted at:
https://github.com/jbrandeb/Ils.git

* Branches
v2.6.36.2 lIs
Original 2.6.36.2 based prototype
v3.5.1 lIs
Port of code to v3.5.1 stable (all features may not work yet)



https://github.com/jbrandeb/lls.git

Contact

jesse.brandeburg@intel.com

e1000-devel@lists.sourceforge.net

netdev@vger.kernel.org



mailto:jesse.brandeburg@intel.com
mailto:e1000-devel@lists.sourceforge.net
mailto:e1000-devel@lists.sourceforge.net
mailto:e1000-devel@lists.sourceforge.net
mailto:netdev@vger.kernel.org

Summary

e Customers want a low latency and low jitter solution

We can make one native to the kernel

* LLS prototype shows a possible way forward

Achieved lower latency and jitter

* Discussion
What would you do differently?

Do you want to help?







Backup




Abstract

* Development-in-progress of a new in-kernel interface to allow
applications to achieve lower network latency and jitter

* Creates a new driver interface to allow an application to drive a poll
through the socket layer all the way down to the device driver

* Benefits are
applications do not have to change
Linux networking stack is not bypassed in any way
Minimized latency of data to the application
Much more predictable jitter

* The design, implementation and results from an early prototype will be
shown, and current efforts to refine, refactor, and upstream the design
will be discussed

 Affected areas include the core networking stack, and network drivers

intel‘



