



# A way towards Lower Latency and Jitter

Jesse Brandeburg jesse.brandeburg@intel.com

Intel® Ethernet

#### BIO

- Jesse Brandeburg < jesse.brandeburg@intel.com>
  - A senior Linux developer in the Intel LAN Access Division, producing the Intel Ethernet product lines
  - Has been with Intel since 1994, and has worked on the Linux e100, e1000, e1000e, igb, ixgb, ixgbe drivers since 2002
  - Jesse splits his time between solving customer issues, performance tuning Intel's drivers, and bleeding edge development for the Linux networking stack



# **Acknowledgements**

#### Contributors

 Anil Vasudevan, Eric Geisler, Mike Polehn, Jason Neighbors, Alexander Duyck, Arun Ilango, Yadong Li, Eliezer Tamir



# "The speed of light sucks." - John Carmack



#### **Current State**

- NAPI is pretty good, but optimized for throughput
- Certain customers want extremely low end to end latency
  - -Cloud providers
  - -High Performance Computing (HPC)
  - -Financial Services Industry (FSI)
- The race to the lowest latency has sparked user-space stacks
  - Most bypass the kernel stack
  - Examples include OpenOnload® application acceleration,
     Mellanox Messaging Accelerator (VMA), RoCEE/IBoE,
     RDMA/iWarp, and others [1]
- [1] see notes for links to above products



#### **Problem Statement**

- Latency is high by default (especially for Ethernet)
- Jitter is unpredictable by default

#### **Software Causes**

- Scheduling/context switching of the process
- Interrupt balancing algorithms
- Interrupt rate settings
- Path length from receive to transmit

#### **Hardware Causes**

- # of fetches from memory
- Latency inside the network controller
- Interrupt propagation
- Power Management (NIC, PCIe, CPU)



# **Latency and Jitter Contributors**

| Key sources today              | Solutions                                                      |
|--------------------------------|----------------------------------------------------------------|
| Raw Hardware Latency           | New Hardware                                                   |
| Software Execution Latency     | Opportunity                                                    |
| Scheduling / Context Switching | Opportunity                                                    |
| Interrupt Rebalancing          | Interrupt-to-core mapping                                      |
| Interrupt Moderation/Limiting  | Minimize/Disable throttling (ITR=0)                            |
| Power Management               | Disable (or limit) CPU power management, PCIe power management |
| Bus Utilization (jitter)       | Isolate device                                                 |



# **Latency and Jitter Contributors**

| Key sources today              | Solutions                                                      |
|--------------------------------|----------------------------------------------------------------|
| Raw Hardware Latency           | New Hardware                                                   |
| Software Execution Latency     | Opportunity                                                    |
| Scheduling / Context Switching | Opportunity                                                    |
| Interrupt Rebalancing          | Interrupt-to-core mapping                                      |
| Interrupt Moderation/Limiting  | Minimize/Disable throttling (ITR=0)                            |
| Power Management               | Disable (or limit) CPU power management, PCIe power management |
| Bus Utilization (jitter)       | Isolate device                                                 |



#### **Traditional Transaction Flow**

- App transmits thru sockets API
  - Passed down to driver and h/w unblocked
  - TX is "Fire and Forget"
- 2. App checks for receive
- 3. No immediate receive thus block
- 4. Packet received & Interrupt generated
  - Interrupt subject to Int Rate & Int Balancing
- 5. Driver passes to Protocol
- 6. Protocol/Sockets wakes App
- 7. App received data thru sockets API
- 8. Repeat



Very inefficient for low-latency traffic



# **Latency Breakdown 2.6.36**



# **Latency Breakdown kernel v3.5**



• Total: 5722 ns



# Jitter Measurements min/max in us measured by netperf





# Jitter Measurements standard deviation measured by netperf

#### Stddev\_latency netperf





# **Proposed Solution**

- Improve the software latency and jitter by driving the receive from user context
- Result
  - The Low Latency Sockets proof of concept



# **Low Latency Sockets (LLS)**

- LLS is a software initiative to reduce networking latency and jitter within the kernel
- Native protocol stack is enhanced with a low latency path in conjunction with packet classification (queue picking) by the NIC
- Transparent to applications and benefits those sensitive to unpredictable latency
- Top down busy-wait polling replaces interrupts for incoming packets



# **New Low-Latency Transaction Flow**

- App transmits thru sockets API
  - Passed down to driver and h/w unblocked
  - TX is "Fire and Forget"
- App checks for data (receive)
- Check device driver for pending packet (poll starts)
- 4. Meanwhile, packet received to NIC
- 5. Driver processes pending packet
  - Bypasses context switch & interrupt
- 6. Driver passes to Protocol
- 7. App receives data through sockets API
- 8. Repeat





## **Proof of Concept**

- Code developed on 2.6.36.2 kernel
- Initial numbers done with ixgbe driver from out of tree
- Includes lots of timing and debug code
- Currently reliant upon
  - hardware flow steering
  - one queue pair (Tx/Rx) per CPU
  - Interrupt affinity configured



# **Proof of Concept Results (2.6.36.2)**





# Jitter Results min/max latency in us, as measured by netperf





# Jitter Results standard deviation as measured by netperf





#### **Possible Issues**

- Unpalatable structure modifications
  - struct sk\_buff
  - struct sk
- Dependency on driver or kernel implemented flow steering
- Current amount of driver code to implement
  - Current work already in progress on a much simpler version
- Default enabled?
  - How can we turn this on and off
    - Don't want a socket option defeats the purpose
- Security issues?
  - Application can now force hardware/memory reads unlikely to be an issue
  - The new poll runs in syscall context, which should be safe but we need to be careful to not create a new vulnerability
  - does this new implementation create other problems?



#### **Current work**

- Work in progress includes
  - Further simplified driver using a polling thread
  - Port of the current code to v3.5
- Future work
  - Post current v3.5 code to netdev (Q4 2012)
  - Design and refactor based on comments
  - Make sure new flow is measurable and debuggable



### Code

- Git tree posted at:
  - https://github.com/jbrandeb/lls.git
- Branches
  - -v2.6.36.2\_lls
    - -Original 2.6.36.2 based prototype
  - -v3.5.1\_lls
    - -Port of code to v3.5.1 stable (all features may not work yet)



#### **Contact**

jesse.brandeburg@intel.com e1000-devel@lists.sourceforge.net netdev@vger.kernel.org



### **Summary**

- Customers want a low latency and low jitter solution
  - -We can make one native to the kernel
- LLS prototype shows a possible way forward
  - Achieved lower latency and jitter

- Discussion
  - –What would you do differently?
  - –Do you want to help?





# Backup



#### **Abstract**

- Development-in-progress of a new in-kernel interface to allow applications to achieve lower network latency and jitter
- Creates a new driver interface to allow an application to drive a poll through the socket layer all the way down to the device driver
- Benefits are
  - applications do not have to change
  - Linux networking stack is not bypassed in any way
  - Minimized latency of data to the application
  - Much more predictable jitter
- The design, implementation and results from an early prototype will be shown, and current efforts to refine, refactor, and upstream the design will be discussed
- Affected areas include the core networking stack, and network drivers

