Real-Time Micro-Benchmark for Real-Time Linux

Vernon Mauery

IBM Linux Technology Center
Real-Time Linux
Disclaimer

This is not my code, but I know who wrote it
Mike Fulton <fultonm@ca.ibm.com>
Ajith Ramanath <ajith.ramanath@in.ibm.com>
Radhakrishnan Thangamuthu <rthangam@in.ibm.com>

Recently released into the wild
http://sourceforge.net/projects/rtmicrobench/
for those who just can't wait:
svn co https://rtmicrobench.svn.sourceforge.net/svnroot/rtmicrobench/rtmb
Benchmarks

Lies, damn lies, and benchmarks
Fabricated workloads that give a skewed picture
Can offer a small window into specific workloads
Pick your favorite benchmark to tell you the lies that sooth you the most
Yet Another Benchmark?

No ideal RT benchmark
 Cross platform
 Cross language
 Testing RT APIs (with micro benchmarks)

Customer Java acceptance test
 Does it fail in C too?
 A small pile of disembodied tests
 Still testing against hard-coded standards

Starting from the bottom up
 Use an automatic calibration
 Use a test harness
 Use proper statistical models
How does it work?

Establish the clock resolution
For each remaining test
 For iteration count
 Get current time
 Perform work (test some API or other small task)
 Get time
 Did the test run for longer than the clock resolution?
 If not, increase work size
 Is determinism within user constraints? (soft, hard, guaranteed)
 re-run with larger workload (longer time) or quit
Give the test a latency score based on how deterministic it is
Give a throughput score at that level of determinism
Determinism Scores

Soft RT
- 30% deviation
- 99th percentile

Hard RT
- 20% deviation
- 99.9th percentile

Guaranteed RT
- 10% deviation
- 99.999th percentile
<table>
<thead>
<tr>
<th>Feature</th>
<th>C</th>
<th>C++</th>
<th>Java</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bytecode Consistency</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Clock</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Compilation</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Disk I/O read</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Disk I/O write</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Event dispatch</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Float rate</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Garbage generation</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Int rate</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Lock consistency</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Mcache perf</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Multi CPU</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Multi thread</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Net I/O</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>NHRT support</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Periodic event</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Scoped memory</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Thread priority</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Time accuracy</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Timer</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
Tests

Bytecode Consistency (Java)
 Verifies that each bytecode instructions perform correctly
Clock (All)
 Determines the granularity of the clock
Compilation (Java)
 Verifies that the bytecode compiler does not interfere with the performance of the application
Disk I/O Read and Write (All)
 Determines the time to read or write a block of data on the disk
Event Dispatch (All)
 Measures time to dispatch work between two running threads
Float Rate (All)
 Measures the rate of a mix of floating point operations
Garbage Generation (Java)
 Measures effectiveness and impact of GC on running threads
Tests Continued

Int Rate (All)
 Measures the rate of a mix of integer instructions

Lock Consistency (All)
 Measures uncontended lock acquisition at various priorities

Mcache perf (All)
 Measures the performance of the memory cache

Multi-CPU (C++, Java)
 Creates objects and does work in a periodic scheduling setup

Multi-Thread (All)
 Throughput of matrix multiplication between 1 and NR_CPUS

Net I/O (All)
 Measures time to read a block of data from a network connection

NHRT No Heap Real Time (RTSJ)
 Measures consistency of NHRT threads running on a loaded system
More Tests

Periodic Event (All)
 Measures how consistently periodic events are dispatched
Scoped Memory (RTSJ)
 Measures the cost of accessing objects within various scopes
Thread Priority (All)
 Verifies that higher-priority threads preempt lower-priority threads
Time Accuracy (All)
 Evaluates the accuracy of the time subsystem by sleeping with the high-resolution timer and then comparing with the clock
Timer (All)
 Measures accuracy of the high-resolution timer by checking for the minimum time a thread can sleep and deterministically wake up
Cross Language

Determinism Guaranteed-RT

- clock_config
- disk_io_read_test
- event_dispatch
- float_rate_test
- int_rate_test
- lock_consistency
- mem_cache_test
- multi_cpu
- multi_thread
- net_io_test
- periodic_event
- thread_priority
- time_accuracy
- timer_config

Languages:
- C
- C++
- Java
Cross Platform

Determinism Guaranteed-RT

Intel v. AMD

- clock_config
- disk_io_read_config
- disk_io_write_config
- event_dispatch
- float_rate_config
- int_rate_config
- lock_consistency
- mcache_perf_config
- multi_thread
- net_io_config
- periodic_event
- thread_priority
- time_accuracy
- timer_config

Graph showing comparison between Intel and AMD on various configurations.
Loaded vs. Unloaded

Determinism Loaded v. Unloaded

Unloaded

Loaded
A solid, across-the-board real-time comparison (system, OS, language)

Regressions

Daily test.kernel.org RTMB runs...

So you can brag about how awesome your box is
So you [your company] can sell more software
So you [your company] can sell more services
So you [your company] can sell more hardware

Just in case /dev/null is looking a little empty
This work represents the view of the author and does not necessarily represent the view of IBM.

IBM, IBM (logo), e-business (logo), pSeries, e (logo) server, and xSeries are trademarks or registered trademarks of International Business Machines Corporation in the United States and/or other countries.

Linux is a registered trademark of Linus Torvalds.

Other company, product, and service names may be trademarks or service marks of others.