

Persistent Memory: What's Done, Coming Soon, Expected Long-term

Andy Rudoff
Principal Engineer
NVM Software
Intel Corporation

The Plumbers "three-slides" Rule

- What has been done current state
- What is about to happen announced products
- What is expected to happen next decade

Where Writes are Cached

The Data Path

Two Levels of Flushing Writes

libpmem Load/Store Persistence

Assume pmem Exists...

Paging from the OS Page Cache

Linked List Example

NVM Library: pmem.io

64-bit Linux Initially

Persistent Memory

- Byte addressable persistence
 - Fast enough to load directly
 - Usually on memory bus
- NVDIMMs available today
- 3D XPoint™ Memory
 - Persistent
 - (up to) 1000X faster than NAND
 - (up to) 1000X endurance
 - 6TB per 2-socket system
 - Cheaper than DRAM
 - SSDs first (demonstrated this week)
 - Intel DIMMs for next gen platform

The Future

- Some more basics
 - RAS, Replication, RDMA
- Many emerging memory types
 - Each with different performance characteristics
 - Each with different cost & capacity
 - Sometimes with different RAS characteristics
 - NUMA locality still applies
 - And sometimes it is non-volatile
- Application Transparent
 - The OS manages the tiers of memory
 - The server space overcomes their fear of paging
 - Used by OS components, run-times, libraries...
- Non-Application Transparent
 - Expose it all, administratively and via APIs
 - More help for transactions and replication

BACKUP

Paging from the OS Page Cache

Attributes of Paging

(and why everyone avoids it)

- Major page faults
 - Block I/O (page I/O) on demand
 - Context switch there and back again
 - Latency of block stack
- Available memory looks much larger
 - But penalty of fault is significant
- Page in must pick a victim
 - Based on simplistic R/M metric
 - Can surprise an application
- Many enterprise apps opt-out
 - Managing page cache themselves
 - Using intimate date knowledge for paging decisions
- Interesting example: Java GC

Paging to pmem

Hiding Places

Two Levels of Flushing Writes

Crossing the 8-byte Store

```
open(...);
mmap(...);
strcpy(pmem, "andy rudoff");
pmem_persist(pmem, 12); *crash*
```

Which Result?

- "\0\0\0\0\0\0\0\0\0\0..."
 "andy\0\0\0\0\0\0..."
 "andy rud\0\0\0\0\0..."
- 4. "\0\0\0\0\0\0\0\0\0off\0\0..."
- 5. "andy rudoff\0"

Visibility vs Powerfail Atomic

Feature	Atomicity
Atomic Store	8 byte powerfail atomicity Much larger visibility atomicity
TSX	Programmer must comprehend XABORT, cache flush can abort
LOCK CMPXCHG	non-blocking algorithms depend on CAS, but CAS doesn't include flush to persistence

Transactional Object Store

Simple pmemobj Transaction

```
TX_BEGIN_LOCK(pop, TX_LOCK_MUTEX, &op->mylock) {
         TX_STRCPY(op->name, "andy rudoff");
} TX_END
```


Two Types of Atomicity

In libpmemobj Macro Magic

(the assembly language of pmem programming)

```
TX BEGIN LOCK(Pop, TX LOCK MUTEX, &D RW(rootoid)->listlock) {
        OID TYPE(struct node) newnodeoid =
                                  TX ZALLOC(struct node, 0);
        D RW(newnodeoid)->data = data;
        D RW(newnodeoid)->nextoid = D RO(rootoid)->headoid;
                                                                         OIDroot
        TX ADD(rootoid);
        D RW(rootoid)->headoid = newnodeoid;
                                                                          OID
newnode
} TX_ONABORT {
                                                                         oid
        perror("transaction failed");
        /* · · · */
} TX END
```


pmemobi pool

Replication Challenge of pmem

RDMA to pmem

Evolving libnuma (and libmemkind)

For More Information...

- SNIA NVM Programming Model
 - http://www.snia.org/forums/sssi/nvmp
- Intel Architecture Instruction Set Extensions Programming Reference
 - https://software.intel.com/en-us/intel-isa-extensions
- Open Source NVM Library work
 - http://pmem.io
- Linux kernel support & instructions
 - https://github.com/01org/prd

Even More Information...

- ACPI 6.0 NFIT definition (used by BIOS to expose NVDIMMs to OS)
 - http://www.uefi.org/sites/default/files/resources/ACPI_6.
 0.pdf
- Open specs providing NVDIMM implementation examples, layout, BIOS calls:
 - http://pmem.io/documents/
- Google group for pmem programming discussion:
 - http://groups.google.com/group/pmem

