
LLVMLinux project

Using Clang
Static Analyzer
With the Linux
Kernel Code

Presented by:

 Behan Webster

 (LLVMLinux project lead)

Presentation Date: 2015.08.19

LLVMLinux project

Static Analyzer (Wikipedia)

● Static program analysis is the analysis of computer
software that is performed without actually executing
programs

● In most cases the analysis is performed on some
version of the source code, and in the other cases,
some form of the object code

LLVMLinux project

Static Analyzer (Original)

● Originally tools which looked for common problems
using pattern matching on source code

● Typically written outside of the compiler, not really
understanding the code, its meaning nor intent

LLVMLinux project

Static Analyzer (Semantic)

● Semantic analyzers understand the meaning of the
code

● They employ compiler technology to look at what the
code is doing and what it means

LLVMLinux project

Clang Static Analyzer

● The clang static analyzer uses clang/LLVM
● Analyzes paths through the code within a compilation

unit (a file)
● Looks for deeper, potentially cross-function, issues
● (issues that are often only found at runtime)
● http://clang-analyzer.llvm.org/

LLVMLinux project

How does it work?

● The clang static analyzer is run at compile time
● Applies checkers to compiled code
● Checkers work at the AST/LLIR level
● They can be used to look for common issues
● Each checker looks for a specific kind of issue

LLVMLinux project

Example Generic Checkers

● Branch condition evaluates to a garbage value
● Dangerous variable-length array (VLA) declaration
● Dereference of null pointer
● Dereference of undefined pointer value
● Division by zero
● Garbage return value
● Stack address stored into global variable
● Unix API

LLVMLinux project

Issues with Static Analysis

● Analysis is performed at the compilation unit level
● Not all inputs or context are known
● Assumptions are made
● Not all assumptions are valid
● The result is false positives

LLVMLinux project

Other Issues with Static Analysis

● It makes your compile take a lot longer
● Checkers are run during/after compilation
● Some checkers can take O(n2) time (worst case)
● Typically overall compile times are 2-4x longer

LLVMLinux project

Further Issues with Static Analysis

● Most checkers were written for user space
● We turn off most of these since we are looking at

system level code

LLVMLinux project

How does it work?

● Run your build under scan-build
● Perl script which generates html output from analysis
● Uses ccc-analyzer which messes with CC/CFLAGS

$ scan-build make foo

● (A bit more complicated than that for the kernel)

LLVMLinux project

Analyzing the kernel

● Mainline kernel still needs patches to compile with
clang

● Only works with the latest version of clang
● Requires a patch to ccc-analyzer to work

LLVMLinux project

Just show me how to run it...

● git clone http://git.linuxfoundation.org/llvmlinux.git
● cd llvmlinux/target/vexpress
● make kernel-scan-build
● firefox scan-build-2015-08-18-114747-30457-1/index.html

http://git.linuxfoundation.org/llvmlinux.git

LLVMLinux project

Html
Output

LLVMLinux project

Potential
Memory

Leak
(not

confirmed)

LLVMLinux project

Can Linux Specific Checkers be Added?

● Yes.
● There is a whole mechanism for adding your own checkers
● http://clang-analyzer.llvm.org/checker_dev_manual.html

● Linux kernel specific checkers are the ultimate goal

http://clang-analyzer.llvm.org/checker_dev_manual.html

LLVMLinux project

Contribute to the LLVMLinux Project

● Project wiki page
– http://llvm.linuxfoundation.org

● Project Mailing List
– http://lists.linuxfoundation.org/mailman/listinfo/llvmlinux
– http://lists.linuxfoundation.org/pipermail/llvmlinux/

● IRC Channel
– #llvmlinux on OFTC
– http://buildbot.llvm.linuxfoundation.org/irclogs/OFTC/%23llvmlinux/

● LLVMLinux Community on Google Plus

http://llvm.linuxfoundation.org/
http://lists.linuxfoundation.org/mailman/listinfo/llvmlinux
http://lists.linuxfoundation.org/pipermail/llvmlinux/
http://buildbot.llvm.linuxfoundation.org/irclogs/OFTC/%23llvmlinux/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

