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Static Analyzer (Wikipedia)

● Static program analysis is the analysis of computer 
software that is performed without actually executing 
programs

● In most cases the analysis is performed on some 
version of the source code, and in the other cases, 
some form of the object code
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Static Analyzer (Original)

● Originally tools which looked for common problems 
using pattern matching on source code

● Typically written outside of the compiler, not really 
understanding the code, its meaning nor intent
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Static Analyzer (Semantic)

● Semantic analyzers understand the meaning of the 
code

● They employ compiler technology to look at what the 
code is doing and what it means
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Clang Static Analyzer

● The clang static analyzer uses clang/LLVM
● Analyzes paths through the code within a compilation 

unit (a file)
● Looks for deeper, potentially cross-function, issues
● (issues that are often only found at runtime)
● http://clang-analyzer.llvm.org/
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How does it work?

● The clang static analyzer is run at compile time
● Applies checkers to compiled code
● Checkers work at the AST/LLIR level
● They can be used to look for common issues
● Each checker looks for a specific kind of issue
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Example Generic Checkers

● Branch condition evaluates to a garbage value
● Dangerous variable-length array (VLA) declaration
● Dereference of null pointer
● Dereference of undefined pointer value
● Division by zero
● Garbage return value
● Stack address stored into global variable
● Unix API
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Issues with Static Analysis

● Analysis is performed at the compilation unit level
● Not all inputs or context are known
● Assumptions are made
● Not all assumptions are valid
● The result is false positives
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Other Issues with Static Analysis

● It makes your compile take a lot longer
● Checkers are run during/after compilation
● Some checkers can take O(n2) time (worst case)
● Typically overall compile times are 2-4x longer
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Further Issues with Static Analysis

● Most checkers were written for user space
● We turn off most of these since we are looking at 

system level code
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How does it work?

● Run your build under scan-build
● Perl script which generates html output from analysis
● Uses ccc-analyzer which messes with CC/CFLAGS

$ scan-build make foo

● (A bit more complicated than that for the kernel)
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Analyzing the kernel

● Mainline kernel still needs patches to compile with 
clang

● Only works with the latest version of clang
● Requires a patch to ccc-analyzer to work
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Just show me how to run it...

● git clone http://git.linuxfoundation.org/llvmlinux.git
● cd llvmlinux/target/vexpress
● make kernel-scan-build
● firefox scan-build-2015-08-18-114747-30457-1/index.html

http://git.linuxfoundation.org/llvmlinux.git
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Output 
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Memory

Leak
(not 

confirmed)
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Can Linux Specific Checkers be Added?

● Yes.
● There is a whole mechanism for adding your own checkers
● http://clang-analyzer.llvm.org/checker_dev_manual.html

● Linux kernel specific checkers are the ultimate goal

http://clang-analyzer.llvm.org/checker_dev_manual.html
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Contribute to the LLVMLinux Project

● Project wiki page
– http://llvm.linuxfoundation.org

● Project Mailing List
– http://lists.linuxfoundation.org/mailman/listinfo/llvmlinux
– http://lists.linuxfoundation.org/pipermail/llvmlinux/

● IRC Channel
–  #llvmlinux on OFTC
– http://buildbot.llvm.linuxfoundation.org/irclogs/OFTC/%23llvmlinux/

● LLVMLinux Community on Google Plus

http://llvm.linuxfoundation.org/
http://lists.linuxfoundation.org/mailman/listinfo/llvmlinux
http://lists.linuxfoundation.org/pipermail/llvmlinux/
http://buildbot.llvm.linuxfoundation.org/irclogs/OFTC/%23llvmlinux/
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