
www.linaro.org
 1

GCC and LLVM collaboration
LPC 2014, Düsseldorf, Germany

Renato Golin
LLVM Tech-Lead

Linaro

http://www.linaro.org/

www.linaro.org
 2

• What is this all about?

– Sharing ideas, not code (license issues)

– Standardising public extensions

– Creating a common user interface

Purpose

http://www.linaro.org/

www.linaro.org
 3

• We share standards!

• We share projects!

• We share goals!

The Good

http://www.linaro.org/

www.linaro.org
 4

• What do we share?
– Standards: C/C++/ELF/Dwarf etc.

– Assembly language: AT&T/Intel/ARM-UAL

– Many command line options' syntax/semantics

• Common entry/exit points

– Libraries (glibc, STL, sanitizers)

– Binutils (assembler, linker [bfd, gold])

• Design

– LTO, PGO

– Operating System logic (driver)

Current Status

http://www.linaro.org/

www.linaro.org
 5

• Binutils
– GAS is required for many targets, important for many

others

– LD is required for all (for now)

• Glibc/newlib
– LLVM has no alternative (should it?)

• Sanitizers
– Same source on both, different integration

– Both compilers are more than just users, they're direct
contributors

Common Projects

http://www.linaro.org/

www.linaro.org
 6

• We could aim towards a common user interface!

• We could document better our extensions!

• We could avoid surprising users with unintended side effects!

The Bad

http://www.linaro.org/

www.linaro.org
 7

• Build systems can be very complex
– Command line options vary across compilers (-f*)

– As well as their semantics, even if similar names (-O*)

– Target description can have subtle differences

– As well as binary names (arm-linux-gnueabihf-gcc)

• Default behaviour should be common

– Ex. target attributes, not optimisation levels

• Flag semantics should be common

– Ex. -foptions, not -debug=whatever

Driver - Common user interface

http://www.linaro.org/

www.linaro.org
 8

• GNU and LLVM extensions can break compatibility
– If the implementation is only in one compiler

– If the documentation is not complete, nor accurate

• Inline Assembler

– Register definitions are undocumented and confusing

– GCC changes behaviour across versions

• Attributes

– Position and semantics do vary, not always meaningfully

• Language extensions

– VLAIS will never get into LLVM (against the standard)

– Nested functions either (standardisation of lambdas)

Extensions Standards

http://www.linaro.org/

www.linaro.org
 9

The End

Questions!

http://www.linaro.org/

	Linaro Introduction
	Why Linaro?
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

