Support for Open-Channel SSDs

Matias Bjørling, Jesper Madsen, Javier González

Linux Plumbers Conference 16th October 2014

SSDs are Unpredictable

- Narrow block interface
- 1000x difference in latency

Open-Channel SSDs

- Allow host to control data placement and garbage collection
- Expose new commands to the host
 - Identification of SSD geometry and configuration
 - Flash Erase (Sync./Async.)
 - Flash health (piggy-backed onto read and write accesses)
- Offload as much as possible to hardware
 - Flash controller, bad block management, ECC, etc.
- Benefits
 - Control data placement \rightarrow Control parallelism \rightarrow Control latency
 - Align SSD algorithms to system workload \rightarrow Optimal resource usage
 - Allow new interfaces to interact directly with flash \rightarrow Single translation

Architecture

Platforms

- Availability
 - OpenSSD Jasmine (SATA)
 - OpenSSD Cosmos (PCI-e/NVMe)
 - IIT Madras, India (NVMe/RapidIO)
- Keith's QEMU NVMe implementation
- Prototype SSD from commercial vendors

Community

- Local File Systems?
 - Atomic IOs, expose SSD configuration
- Database Systems? (ABIs)
 - Atomic IOs, simplify storage path, directly access physical flash pages
- Distributed File Systems? (ABIs)
 - Ceph (osd-ceph/LevelDB/RocksDB)
 - Gluster
- LightNVM Internals?
 - Efficient flash scheduling profiles
 - Low and high memory environment
- How can we make other drives work?
- Is this the right architecture for your drive?