LLVM ARM Toolchain

LPC 2014, Dusseldorf, Germany

Linaro
h 3

Linaro
r

Renato Golin
LLVM Tech-Lead
Linaro

1
www.linaro.org



http://www.linaro.org/

Agenda

Building a toolchain from the ground up
- Correctness, performance, ABl compatibility

- Tools, libraries, system integration
Keeping the toolchain stable

- Validation and continuous integration
- Release tests and benchmarking

Push forward
- Increase compatibility with other compilers, systems

- Improve performance, target specific behaviour

2

___l__lnaro www.linaro.org



http://www.linaro.org/

Building a toolchain from the ground up

What constitutes a toolchain?

Compiler: front-ends, optimisations, back-ends

Tools: assembler, linker, object dumps

Compiler libraries: libgcc, compiler-rt

Libraries: C library, STL, Boost, etc.

Standard headers, including target specific (arm_neon.h)
System behaviour: compiler driver

How to validate toolchains?

_Linaro

Conformance and performance testing (front/back-end)
System integration (driver)

3
www.linaro.org



http://www.linaro.org/

Short history of ARM LLVM

First, make sure the code generated is correct
- 2010: Connected EDG front-end to LLVM back-end

Next, make sure the ABI is followed and code is sane

- 2011/2012: Extensive ABI tests, performance
Improvements

Validation and CI

- 2013: Basic buildbots (check, self-host, test-suite)
Integrated assembler & exception handling

- 2013/2014: extensive support, now on by default
Libraries
- 2014: Compiler-RT + libc++ (STL) testing

Linaro 4
n, www.linaro.org



http://www.linaro.org/

Current Work

Compiler Library
- LLVM used to rely on libgcc for ARM

— But a compiler library has to work on its own
— Compiler-RT building on ARM and AArch64
— But still using libgcc _eh (instead of libunwind)

C library

- Using glibc, and that's good enough
STL Library

— Libc++ building well on ARM/AArch64, but needs more
testing

5

Linaro .
n, www.linaro.org



http://www.linaro.org/

Current Work

Linker
- Bfd and gold work well with LLVM, but would be good to
have a linker with compatible license

- LLd is promising, but still too green
- MCLinker is more mature, but too specific

. 6
.‘!_II"IE:H'O www.linaro.org



http://www.linaro.org/

Keeping the toolchain stable

Validation
- Release testing (self-hosting, test-suite)

- Release benchmarking (SPEC, EEMBC)
- Minor release validation, too (3.4.x)
Continuous integration

- Buildbots on various stages

 Build+check-all

» Self-host+check-all

» Test-suite (+benchmark)
 Compiler-RT tests (including sanitizers)

___Linaro

7

www.linaro.org



http://www.linaro.org/

Keeping the toolchain stable

Further continuous integration
- Adding more stages of compatibility

e Libc++ /libc++abi buildbot
* Run test-suite with RT+libc++
* Build and use lld on standard bots
e Bootstrap lldb buildbots
- System integration

 Build on different platforms (Debian, Arch, Fedora)
e Chromium/Firefox build & tests

8

___l__lnaro www.linaro.org



http://www.linaro.org/

Pushing forward

Linker
- Probably lid (already getting a lot or ARM/AArch64 logic)

- Maybe MCLinker, too (make it more target agnostic)

- LTO support everywhere!

Multiarch / IFUNC
- Assembler behaviour (.fpu/.arch)

— Driver environment discovery (header/lib paths)

Inline assembly
- GNU magic register definitions (“Q” vs. “Qo0”)

- GNU changing clobber definitions (memory — sp)

9

___l__lnaro www.linaro.org



http://www.linaro.org/

Pushing forward

Sanitizers
- Make sure all memory sanitizers (msan, Isan, asan) work
as intended on ARM architectures (ie. add RT support)

- Undefined behaviour sanitizer needs investigation

- Thread sanitizers need 64-architecture (pointer magic)
Improve integrated assembler support

- Build large projects (Chromium, Firefox)

- Build the kernel!

Stress libc++'s compatibility with EHABI

" 10
Linaro .
n, www.linaro.org



http://www.linaro.org/

Far future...

MCJIT
- Usage in CPU can be driven by:

« GPGPU languages, as development / debug
platforms, fall-back, load balancing

« Debugger, as failure-safe execution
* On-demand computing: scripting (JS, flash, etc)
VMKit

— Can we use virtualisation extensions?
Thread-sanitizer

- Can we port the thread sanitizer to 32-bit platforms?

. 11
Linaro .
n, www.linaro.org



http://www.linaro.org/

Bottom Line

Creating toolchains is hard work
The work that needs doing is either boring or annoying
The amount of politics needed is beyond sanity levels

But it has to be done!

12

‘!:_II"IE:H'O www.linaro.org



http://www.linaro.org/

The End

Questions!

Linaro 13 |
= www.linaro.org



http://www.linaro.org/

	Linaro Introduction
	Why Linaro?
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

