
www.linaro.org
 1

LLVM ARM Toolchain
LPC 2014, Düsseldorf, Germany

Renato Golin
LLVM Tech-Lead

Linaro

http://www.linaro.org/

www.linaro.org
 2

• Building a toolchain from the ground up
– Correctness, performance, ABI compatibility

– Tools, libraries, system integration

• Keeping the toolchain stable

– Validation and continuous integration

– Release tests and benchmarking

• Push forward
– Increase compatibility with other compilers, systems

– Improve performance, target specific behaviour

Agenda

http://www.linaro.org/

www.linaro.org
 3

• What constitutes a toolchain?
– Compiler: front-ends, optimisations, back-ends

– Tools: assembler, linker, object dumps

– Compiler libraries: libgcc, compiler-rt

– Libraries: C library, STL, Boost, etc.

– Standard headers, including target specific (arm_neon.h)

– System behaviour: compiler driver

• How to validate toolchains?

– Conformance and performance testing (front/back-end)

– System integration (driver)

Building a toolchain from the ground up

http://www.linaro.org/

www.linaro.org
 4

• First, make sure the code generated is correct
– 2010: Connected EDG front-end to LLVM back-end

• Next, make sure the ABI is followed and code is sane

– 2011/2012: Extensive ABI tests, performance
improvements

• Validation and CI

– 2013: Basic buildbots (check, self-host, test-suite)

• Integrated assembler & exception handling

– 2013/2014: extensive support, now on by default

• Libraries

– 2014: Compiler-RT + libc++ (STL) testing

Short history of ARM LLVM

http://www.linaro.org/

www.linaro.org
 5

• Compiler Library
– LLVM used to rely on libgcc for ARM

– But a compiler library has to work on its own

– Compiler-RT building on ARM and AArch64

– But still using libgcc_eh (instead of libunwind)

• C library

– Using glibc, and that's good enough

• STL Library

– Libc++ building well on ARM/AArch64, but needs more
testing

Current Work

http://www.linaro.org/

www.linaro.org
 6

• Linker
– Bfd and gold work well with LLVM, but would be good to

have a linker with compatible license

– LLd is promising, but still too green

– MCLinker is more mature, but too specific

Current Work

http://www.linaro.org/

www.linaro.org
 7

• Validation
– Release testing (self-hosting, test-suite)

– Release benchmarking (SPEC, EEMBC)

– Minor release validation, too (3.4.x)

• Continuous integration

– Buildbots on various stages
● Build+check-all
● Self-host+check-all
● Test-suite (+benchmark)
● Compiler-RT tests (including sanitizers)

Keeping the toolchain stable

http://www.linaro.org/

www.linaro.org
 8

• Further continuous integration
– Adding more stages of compatibility

● Libc++ / libc++abi buildbot
● Run test-suite with RT+libc++
● Build and use lld on standard bots
● Bootstrap lldb buildbots

– System integration
● Build on different platforms (Debian, Arch, Fedora)
● Chromium/Firefox build & tests

Keeping the toolchain stable

http://www.linaro.org/

www.linaro.org
 9

• Linker
– Probably lld (already getting a lot or ARM/AArch64 logic)

– Maybe MCLinker, too (make it more target agnostic)

– LTO support everywhere!

• Multiarch / IFUNC
– Assembler behaviour (.fpu/.arch)

– Driver environment discovery (header/lib paths)

• Inline assembly
– GNU magic register definitions (“Q” vs. “Qo”)

– GNU changing clobber definitions (memory → sp)

Pushing forward

http://www.linaro.org/

www.linaro.org
 10

• Sanitizers
– Make sure all memory sanitizers (msan, lsan, asan) work

as intended on ARM architectures (ie. add RT support)

– Undefined behaviour sanitizer needs investigation

– Thread sanitizers need 64-architecture (pointer magic)

• Improve integrated assembler support

– Build large projects (Chromium, Firefox)

– Build the kernel!

• Stress libc++'s compatibility with EHABI

Pushing forward

http://www.linaro.org/

www.linaro.org
 11

• MCJIT
– Usage in CPU can be driven by:

● GPGPU languages, as development / debug
platforms, fall-back, load balancing

● Debugger, as failure-safe execution
● On-demand computing: scripting (JS, flash, etc)

• VMKit

– Can we use virtualisation extensions?

• Thread-sanitizer

– Can we port the thread sanitizer to 32-bit platforms?

Far future...

http://www.linaro.org/

www.linaro.org
 12

• Creating toolchains is hard work

• The work that needs doing is either boring or annoying

• The amount of politics needed is beyond sanity levels

• But it has to be done!

Bottom Line

http://www.linaro.org/

www.linaro.org
 13

The End

Questions!

http://www.linaro.org/

	Linaro Introduction
	Why Linaro?
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

