
Unrestricted © Siemens AG 2014. All rights reservedImage: Marcus Quigmire, licensed under CC BY 2.0

Real-Time Virtualization –
How Crazy Are We?

Siemens Corporate Technology | October 2014



Page 2 October 2014 Jan Kiszka, Corporate Technology Unrestricted © Siemens AG 2014. All rights reserved

Real-Time Systems Can Benefit from Virtualization

Virtualizable real-time systems

• Possible scenarios

• Control systems
(industry, healthcare, automotive etc.)

• Communication systems
(media streaming & switching, etc.)

• Trading systems (stocks, goods, etc.)

• …

• Primary drivers

• Consolidation, include mixed criticality

• Legacy system migration

• [Development & test]

Images: Ethernet switch by Ben Stanfield, licensed under CC BY-SA 2.0, stock market by Katrina.Tuliao, licensed under CC BY 2.0



Page 3 October 2014 Jan Kiszka, Corporate Technology Unrestricted © Siemens AG 2014. All rights reserved

CPU

I/O interface

CPU

Virtualization ≠ acceleration

CPU

I/O interface

Real-time
Software

Stack

The critical data path with and without virtualization

Event Reaction

CPU

I/O interface

Real-time
Software

Stack

Hypervisor

I/O interface

Real-time
Software

Stack

Hypervisor

Virtual I/O

Other
Guests

vCPU

Virt. I/O

vCPU

Native real-time setup Hardware-assisted
virtualization

Resource sharing & abstraction
via emulation

Event Reaction Event Reaction



Page 4 October 2014 Jan Kiszka, Corporate Technology Unrestricted © Siemens AG 2014. All rights reserved

RT Virtualization – Two Architectural Options

Real-Time Host OS

Guest
OS

Hypervisor

Real-time
Application

Partitioning Hypervisor

Real-time
Application

GPOS

RTOS

I/O

RT-Hyperv.

RTOS

CPU CPU

I/O I/O

CPU CPU

I/O



Page 5 October 2014 Jan Kiszka, Corporate Technology Unrestricted © Siemens AG 2014. All rights reserved

Architecture of a KVM-based RT-Hypervisor

PREEMPT-RT +
KVM on dedicated cores

Real-time
Application

Hardware

RT-enhanced
QEMU

Stand-alone RTOS
or AMP Guest

Non-RT
Application



Page 6 October 2014 Jan Kiszka, Corporate Technology Unrestricted © Siemens AG 2014. All rights reserved

PREEMPT-RT enables RT-Virtualization

Role of Linux extension PREEMPT-RT

• Reduce worst-case event delivery latencies

• Integrates KVM support

• Original use-case: virtualization + native RT applications

• Allows to prioritize virtualization workload over uncritical tasks

• Can be combined with CPU isolation

• 1:1 assignment: host CPU – RT guest CPU

• Off-load all non-RT tasks
(including low-priority QEMU threads)

• Warning: No 100% guest CPU load feasible!

• NO_HZ_FULL extensions work toward enabling this



Page 7 October 2014 Jan Kiszka, Corporate Technology Unrestricted © Siemens AG 2014. All rights reserved

Decent Latencies Achievable in KVM-only Setups

• Host setup

• KVM on x86 PREEMPT-RT Linux

• Virtual machine on dedicated core

• Intel NIC (E1000 family) as I/O device,
directly assigned to guest

• Permanent disk I/O load

• Guest setup

• Proprietary RTOS

• Real-time network stack

• Measurement setup

• Linux/Xenomai (native installation)

• Real-time network stack RTnet

• Periodic ICMP ping messages sent to target

• Recorded round-trip latency (error <50 µs) 

=> Worst-case latency after 16h: 330 µs

RTOS
Guest

RT-KVM

NIC other HW

Real-Time
Linux

with RTnet

NICother HW

Measuring I/O latency of an RT Guest



Page 8 October 2014 Jan Kiszka, Corporate Technology Unrestricted © Siemens AG 2014. All rights reserved

RT-QEMU is Required for Emulating in Real-Time

QEMU as a Real-Time Device Emulator

• Scenarios

• Guest uses NIC A, host has NIC B attached

• Legacy devices are no longer available on a modern host

• Multiple guests share single I/O interface
for talking to different devices (e.g. on a CAN bus)

• QEMU can handle such scenarios
via emulation

• Requirements on emulation

• Equivalent functional behavior

• Devices models need to react in time
on guest requests

• Devices models need to deliver
external events to the guest timely



Page 9 October 2014 Jan Kiszka, Corporate Technology Unrestricted © Siemens AG 2014. All rights reserved

VCPU
VCPU

VCPU
VCPU

IO-Thread

 Device models
 I/O back-ends
 GUI
 QMP, HMP
 ...

VCPU
VCPU

VCPU
VCPU

VCPU
VCPU

VCPU
VCPU

VCPU
VCPU

VCPU
VCPU

VCPU
VCPU

VCPU
VCPU

Concurrency in QEMU/KVM –
The Big QEMU Lock (BQL)



Page 10 October 2014 Jan Kiszka, Corporate Technology Unrestricted © Siemens AG 2014. All rights reserved

Critical BQL Zones

CPUState

• Read/write access
• cpu_single_env

Coalesced MMIO flushing

PIO/MMIO request-to-device dispatching

Back-end access

• TX on network layer

• Write to character device

• Timer setup, etc.

Back-end events (iothread jobs)
• Network RX, read from chardev, timer signals, …

IRQ delivery

• Raising/lowering from device model to IRQ chip

• Injection into VCPU (if user space IRQ chips)



Page 11 October 2014 Jan Kiszka, Corporate Technology Unrestricted © Siemens AG 2014. All rights reserved

Challenge 1: Management of Task Priorities

There can be many task involved

• VCPU threads

• VIRQ injection threads (QEMU: iothreads)

• Kernel threads (IRQ, worker, RCU, forgot anything?)

Problems

• Wrong configuration destroys RT

• ...or locks up parts or all of your system

• Actually a generic RT Linux issue

Proposals?

• Tool-based dependency discovery?

• Tool-based configuration?

• (More) automatic configuration?



Page 12 October 2014 Jan Kiszka, Corporate Technology Unrestricted © Siemens AG 2014. All rights reserved

Challenge 2: Management of IRQ Parameters

Relevant IRQ parameters

• CPU affinity

• Thread priority (if any)

How to configure in advance?

• Line-based IRQs may be reachable via /proc/irq

• MSIs are not...

• Dynamic IRQ numbers – how to associate with devices?

Proposals?

• Something like /sys/devices/.../<device>/irq_vector<N>/...?



Page 13 October 2014 Jan Kiszka, Corporate Technology Unrestricted © Siemens AG 2014. All rights reserved

Safe Isolation via Linux?

Stahlkocher, CC BY-SA 3.0

Code size

SIL 1..4
ASIL

SIL2Linux

Certification

Validation

Mixed Criticality
Multicore

Consolidation

Legacy Code

Formal Methods



Page 14 October 2014 Jan Kiszka, Corporate Technology Unrestricted © Siemens AG 2014. All rights reserved

What about postponing the hypervisor start?

Basic concept of late partitioning

Hardware Hardware

Partitioning Layer

Linux
Linux

Hardware

Partitioning Layer

Linux
RT

App

1. Boot phase 2. Partitioning
phase

3. Operational phase

Firmware/BIOS

[Boot Loader]

Images

Configs

Linux



Page 15 October 2014 Jan Kiszka, Corporate Technology Unrestricted © Siemens AG 2014. All rights reserved

Jailhouse: Keep it simple, keep it open

The Philosophy of Jailhouse

• Avoid emulation, focus on hardware assisted isolation

• No overcommitment, no scheduler, static partitioning

• Directly assign physical devices, do not emulate them

• You need more? Use KVM!

• Only expose resources that are required for operation

• No boot-up phase virtualization

• Board initialization done by Linux

• Off-load uncritical tasks to Linux

• Initial setup / image loading

• Reconfigurations while in non-operational mode

• Monitoring, logging etc.

• Released under GPLv2

=> Minimal-sized certifiable hypervisor
with full CPU assignment and Linux look-and-feel


	Title Version 2 Arial Bold 40 pt.
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15

