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Real-Time Systems Can Benefit from Virtualization

Virtualizable real-time systems

• Possible scenarios

• Control systems
(industry, healthcare, automotive etc.)

• Communication systems
(media streaming & switching, etc.)

• Trading systems (stocks, goods, etc.)

• …

• Primary drivers

• Consolidation, include mixed criticality

• Legacy system migration

• [Development & test]
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RT Virtualization – Two Architectural Options
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Architecture of a KVM-based RT-Hypervisor
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PREEMPT-RT enables RT-Virtualization

Role of Linux extension PREEMPT-RT

• Reduce worst-case event delivery latencies

• Integrates KVM support

• Original use-case: virtualization + native RT applications

• Allows to prioritize virtualization workload over uncritical tasks

• Can be combined with CPU isolation

• 1:1 assignment: host CPU – RT guest CPU

• Off-load all non-RT tasks
(including low-priority QEMU threads)

• Warning: No 100% guest CPU load feasible!

• NO_HZ_FULL extensions work toward enabling this
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Decent Latencies Achievable in KVM-only Setups

• Host setup

• KVM on x86 PREEMPT-RT Linux

• Virtual machine on dedicated core

• Intel NIC (E1000 family) as I/O device,
directly assigned to guest

• Permanent disk I/O load

• Guest setup

• Proprietary RTOS

• Real-time network stack

• Measurement setup

• Linux/Xenomai (native installation)

• Real-time network stack RTnet

• Periodic ICMP ping messages sent to target

• Recorded round-trip latency (error <50 µs) 

=> Worst-case latency after 16h: 330 µs
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RT-QEMU is Required for Emulating in Real-Time

QEMU as a Real-Time Device Emulator

• Scenarios

• Guest uses NIC A, host has NIC B attached

• Legacy devices are no longer available on a modern host

• Multiple guests share single I/O interface
for talking to different devices (e.g. on a CAN bus)

• QEMU can handle such scenarios
via emulation

• Requirements on emulation

• Equivalent functional behavior

• Devices models need to react in time
on guest requests

• Devices models need to deliver
external events to the guest timely
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Critical BQL Zones

CPUState

• Read/write access
• cpu_single_env

Coalesced MMIO flushing

PIO/MMIO request-to-device dispatching

Back-end access

• TX on network layer

• Write to character device

• Timer setup, etc.

Back-end events (iothread jobs)
• Network RX, read from chardev, timer signals, …

IRQ delivery

• Raising/lowering from device model to IRQ chip

• Injection into VCPU (if user space IRQ chips)
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Challenge 1: Management of Task Priorities

There can be many task involved

• VCPU threads

• VIRQ injection threads (QEMU: iothreads)

• Kernel threads (IRQ, worker, RCU, forgot anything?)

Problems

• Wrong configuration destroys RT

• ...or locks up parts or all of your system

• Actually a generic RT Linux issue

Proposals?

• Tool-based dependency discovery?

• Tool-based configuration?

• (More) automatic configuration?
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Challenge 2: Management of IRQ Parameters

Relevant IRQ parameters

• CPU affinity

• Thread priority (if any)

How to configure in advance?

• Line-based IRQs may be reachable via /proc/irq

• MSIs are not...

• Dynamic IRQ numbers – how to associate with devices?

Proposals?

• Something like /sys/devices/.../<device>/irq_vector<N>/...?
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Safe Isolation via Linux?

Stahlkocher, CC BY-SA 3.0
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What about postponing the hypervisor start?

Basic concept of late partitioning
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Jailhouse: Keep it simple, keep it open

The Philosophy of Jailhouse

• Avoid emulation, focus on hardware assisted isolation

• No overcommitment, no scheduler, static partitioning

• Directly assign physical devices, do not emulate them

• You need more? Use KVM!

• Only expose resources that are required for operation

• No boot-up phase virtualization

• Board initialization done by Linux

• Off-load uncritical tasks to Linux

• Initial setup / image loading

• Reconfigurations while in non-operational mode

• Monitoring, logging etc.

• Released under GPLv2

=> Minimal-sized certifiable hypervisor
with full CPU assignment and Linux look-and-feel
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